Radio frequency techniques have been deployed in the past time for wireless communication and following its spectral crunch and limited throughput, the visible light spectrum with enormously large bandwidth and potentials for high throughput is being investigated in this work. This study is aimed at investigating and modeling a signal conditioning scheme in the visible light spectrum in view of enhancing the throughput of the network. To effectively enhance communication throughput, a possible solution is to deploy multicarrier techniques. In this work, an adaptive Optimized Flipped Optical (OFO) OFDM is proposed for improved throughput using Lagrange Multiplier and Broyden Fletcher Goldfarb Shanno Algorithm (BFGSA). The Lagrange Multiplier technique was used to formulate the model for the optimization of the throughput constrained by the bit error rate (BER) and the total subcarrier transmit power whereas the BFGSA was used for the estimation of the approximation to the Hessian matrix for the computation of the optimal throughput value. Results showed improved spectral efficiency in favor of the proposed algorithm when compared with the conventional schemes. Further validations revealed the performance superiority of the proposed algorithm when compared with Castel, Wyglinski and Bedeer algorithms under comparable operating conditions for a given average signal to noise ratio (SNR).
The authors gratefully acknowledge the sponsorship of this project by the Petroleum Technology Development Fund (PTDF) under the grant award number P4567720076521527.
References
[1] Bernard J T Mallinder. 1988. Specification Methodology Applied to the GSM System. IEEE 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication, Stockholm, Sweden, 458 - 461.
[2] Chen Shanzhi, Sun Shaohui, Wang Yinmin, Xiao Guojun, and Rakesh Tamrakar. 2015. A Comprehensive Survey of TDD-Based Mobile Communication Systems from TD-SCDMA 3G to TDLTE( A) 4G and 5G directions. IEEE China Communications, 12(2), 40 - 60.
[3] Shanzhi Chen and Jian Zhao. 2014. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36 - 43.
[4] Augustus E Ibhaze, Patience E Orukpe, and Frederick O Edeko. 2020. Li-Fi Prospect in Internet of Things Network. FICC2020, Advances in Intelligent Systems and Computing. Cham, Switzerland: Springer Nature Switzerland AG, 1129, 272–280.
[5] Suneel Kumar, Prabha Tomar, and Aasheesh Shukla. 2015. Effectiveness of OFDM with Antenna Diversity. IEEE International Conference on Communication, Control and Intelligent Systems, Mathura, India, 172 - 175.
[6] Hai Thanh Vo, Shinya Kumagai, Tatsunori Obara, and Fumiyuki Adachi. 2013. Analog Single-Carrier Transmission with frequency-domain Equalization. IEEE 9th Asian-Pacific Conference on Communication, Denpasar, Indonesia, 698 - 702.
[7] Sudershan Mukherjee and Saif Khan Mohammed. 2016. Impact of Frequency Selectivity on the Information Rate Performance of CFO Impaired Single-Carrier Massive MU-MIMO uplink. IEEE Wireless Communication Letters, 5(6), 1-4.
[8] H Sari, G Karam, and I Jeanclaud. 1994. Frequency-domain equalization of mobile radio and terrestial broadcast channels. IEEE GLOBECOM, San Francisco, CA, USA, 1-5.
[9] Dirk Slock. 2008. Diversity-Multiplexing Tradeoff simplified Receivers for frequency-selective MIMO Channels. IEEE 16th European Signal Processing Conference, Lausanne, Switzerland, 1-5.
[10] A. E Ibhaze, P. E Orukpe and F. O Edeko. 2020. Visible Light Channel Modeling for High-data Transmission in the Oil and Gas Industry. Journal of Science and Technology, 12(2), 46-54.
[11] David Falconer, Sirikiat Lek Ariyavisitakul, Anader Benyamin-Seeyar, and Brian Eidson. 2002. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine, 40(4), 58 - 66.
[12] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude. 1995. Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine, 33(2), 100 - 109.
[13] S H Han and J H Lee. 2005. An overview of peak-to-average power ratio reduction technique for multicarrier transmission. IEEE Wireless Communication, 12(2), 56-65.
[14] Charles U Ndujiuba, Oluyinka Oni, and Augustus E Ibhaze. 2015. Comparative Analysis of Digital Modulation Techniques in LTE 4G Systems. Journal of Wireless Networking and Communications, 5(2), 60-66.
[15] J. A. C. Bingham. 1990. Multicarrier modulation for data transmission: an idea whose time has come. IEEE Communications Magazine, 28(5), 5 - 14.
[16] Harald Witschnig, Alois Koppler, Andreas Springer, Robert Weigel, and Mario Huemer. 2002. A Comparison of an OFDM System and a Single Carrier System Using Frequency Domain Equalization. European Transactions on Telecommunications banner, 13(5), 519-530.
[17] Zhaocheng Wang, Qi Wang, Wei Huang, and Zhengyuan Xu. 2017. Visible Light Communications: Modulation and Signal Processing. New Jersey: John Wiley & Sons, Inc.
[18] Oboyerulu E Agboje, Olabode B Idowu-Bismark, and Augustus E Ibhaze. 2017. Comparative Analysis of Fast Fourier Transform and Discrete Wavelet Transform Based MIMO-OFDM. International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), 7(2), 168 - 175.
[19] Charles U Ndujiuba and Augustus E Ibhaze. 2016. Dynamic Differential Modulation of Subcarriers in OFDM. Journal of Wireless Networking and Communications, 6(1), 21-28.
[20] A Czylwik. 1997. Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization. IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 2, 865 - 869.
[21] A Czylwik. 1998. Synchronization for single carrier modulation with frequency domain equalization. VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, Ont., Canada , 3, 2277 - 2281.
[22] P. F. M. Smulders and H. T. Muskens. 1993. Performance of decision feedback equalization in MM-wave indoor radio systems. Proceedings of 2nd IEEE International Conference on Universal Personal Communications, Ottawa, Ontario, Canada, 890 - 893.
[23] N Benvenuto and S Tomasin. 2002. On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Transactions on Communications, 50(6), 947 - 955.
[24] Zhaocheng Wang , Tianqi Mao, and Qi Wang. 2017. Optical OFDM for visible light communications. IEEE 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 1190 - 1194.
[25] J Armstrong. 2009. OFDM for optical communications. IEEE Journal of Light Wave Technology, 27(3), 189 - 204.
[26] J Armstrong and A J Lowery. 2006. Power Efficient Optical OFDM. IEEE Electronics Letters, 42(6), 370 - 372.
[27] Dobroslav Tsonev, Sinan Sinanovic, and Harald Haas. 2012. Novel Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) for Optical Wireless. IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 1 - 5.
[28] A. E Ibhaze, P. E Orukpe and F. O Edeko. 2020. High Capacity Data Rate System: Review of Visible Light Communications Technology. Journal of Electronic Science and Technology.
[29] A. E Ibhaze, F. O Edeko and P. E Orukpe. 2021. Comparative Analysis of Optical Multicarrier Modulations: An Insight into Machine Learning-based Multicarrier Modulation. Gazi University Journal of Science.
[30] Seong Taek Chung and Andrea J. Goldsmith. 2001. Degrees of Freedom in Adaptive Modulation: A Unified View. IEEE Transactions on Communications, 49(9), 1561 - 1571.
[31] Liang Wu, Zaichen Zhang, Jian Dang, Jiangzhou Wang, and Huaping Liu. 2016. Polarity Information Coded Flip-OFDM for Intensity Modulation Systems. IEEE Communications Letters, 20(8), 1089 - 7798.
[32] Jie Lian, Yan Gao, and Dianbin Lian. 2019. Variable Pulse Width Unipolar Orthogonal Frequency Division Multiplexing for Visible Light Communication Systems. IEEE Access, 7, 31022 - 31030.
[33] Simeng Feng, Rong Zhang, Wei Xu, and Lajos Hanzo. 2019. Multiple Access Design for Ultra-Dense VLC Networks: Orthogonal vs Non-Orthogonal. IEEE Transactions on Communications, 67(3), 2218 - 2231.
[34] Kaiming Liu, Bihua Tang, and Yuan’an Liu. 2009. Adaptive Power Loading Based on Unequal-BER Strategy for OFDM Systems. IEEE Communications Letters, 13(7), 474 - 476.
[35] Ebrahim Bedeer, Octavia A. Dobre, Mohamed H. Ahmed, and Kareem E. Baddour. 2012. Optimal bit and power loading for OFDM systems with average BER and total power constraints. IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3685 - 3689.
[36] Igor Griva, Stephen G. Nash, and Ariela Sofer. 2009. Linear and Nonlinear Optimization. Philadelphia: Society for Industrial and Applied Mathematics.
[37] Edwin K. P. Chong and Stanislaw H. Zak. 2013. An Introduction to Optimization. New Jersey: John Wiley & Sons, Inc.
[38] Rajesh Kumar Arora. 2015. OPTIMIZATION Algorithms and Applications. London: Taylor & Francis Group, LLC.
[39] Randy L. Haupt and Douglas H. Werner. 2007. Genetic Algorithms in Electromagnetics. Canada: IEEE Press (A John Wiley & Sons, Inc.).
[40] Singiresu S. Rao. 2009. Engineering Optimization Theory and Practice. Canada: John Wiley & Sons, Inc.
[41] Hai Lin, Xianbin Wang, and Katsumi Yamashita. 2008. A Low-Complexity Carrier Frequency Offset Estimator Independent of DC Offset. IEEE Communication Letters, 12(7), 520 - 522.
[42] Thijs Castel et al. 2016. Adaptive subcarrier modulation for indoor public safety body-to-body networks. IEEE 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 1-5.
[43] Xuan Huang, Fang Yang, Hailong Zhang, Jun Ye, and Jian Song. 2019. Subcarrier and Power Allocations for Dimmable Ehanced ADO-OFDM with Iterative Interference Cancellation. IEEE Access, 7, 28422 - 28435.
[44] Alexander M. Wyglinski, Fabrice Labeau, and Peter Kabal. 2005. Bit Loading With BER-Constraint for Multicarrier Systems. IEEE Transactions on Wireless Communications, 4(4), 1383 - 1387.
Görünür Işık İletişimi için Yeni Bir Adaptif OFO-OFDM Modülasyonu
Radyo frekansı teknikleri Geçmişte kablosuz iletişim için konuşlandırılmış ve spektral sıkıntısını ve sınırlı iş hacmini takiben, son derece büyük bant genişliğine sahip görünür ışık spektrumu ve yüksek verimlilik potansiyeli bu çalışmada araştırılmaktadır. Bu çalışma, ağın verimini artırmak için görünür ışık spektrumunda bir sinyal koşullandırma şemasını araştırmayı ve modellemeyi amaçlamaktadır. İletişim verimini etkili bir şekilde artırmak için olası bir çözüm, çoklu taşıyıcı tekniklerini kullanmaktır. Bu çalışmada, Lagrange Multiplier ve Broyden Fletcher Goldfarb Shanno Algorithm (BFGSA) kullanılarak geliştirilmiş verim için uyarlanabilir bir Optimize Edilmiş Ters Optik (OFO) OFDM önerilmiştir. Lagrange Çarpanı tekniği, bit hata oranı (BER) ve toplam alt taşıyıcı iletim gücü ile sınırlandırılan verimin optimizasyonu için modeli formüle etmek için kullanılırken, BFGSA, aşağıdaki hesaplamalar için Hessian matrisine yaklaşımın tahmini için kullanılmıştır. Sonuçlar, geleneksel şemalarla karşılaştırıldığında önerilen algoritmanın lehine gelişmiş spektral verimlilik gösterdi. Diğer doğrulamalar, belirli bir ortalama sinyal-gürültü oranı (SNR) için karşılaştırılabilir çalışma koşulları altında Castel, Wyglinski ve Bedeer algoritmalarıyla karşılaştırıldığında önerilen algoritmanın performans üstünlüğünü ortaya koydu.
[1] Bernard J T Mallinder. 1988. Specification Methodology Applied to the GSM System. IEEE 8th European Conference on Electrotechnics, Conference Proceedings on Area Communication, Stockholm, Sweden, 458 - 461.
[2] Chen Shanzhi, Sun Shaohui, Wang Yinmin, Xiao Guojun, and Rakesh Tamrakar. 2015. A Comprehensive Survey of TDD-Based Mobile Communication Systems from TD-SCDMA 3G to TDLTE( A) 4G and 5G directions. IEEE China Communications, 12(2), 40 - 60.
[3] Shanzhi Chen and Jian Zhao. 2014. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, 52(5), 36 - 43.
[4] Augustus E Ibhaze, Patience E Orukpe, and Frederick O Edeko. 2020. Li-Fi Prospect in Internet of Things Network. FICC2020, Advances in Intelligent Systems and Computing. Cham, Switzerland: Springer Nature Switzerland AG, 1129, 272–280.
[5] Suneel Kumar, Prabha Tomar, and Aasheesh Shukla. 2015. Effectiveness of OFDM with Antenna Diversity. IEEE International Conference on Communication, Control and Intelligent Systems, Mathura, India, 172 - 175.
[6] Hai Thanh Vo, Shinya Kumagai, Tatsunori Obara, and Fumiyuki Adachi. 2013. Analog Single-Carrier Transmission with frequency-domain Equalization. IEEE 9th Asian-Pacific Conference on Communication, Denpasar, Indonesia, 698 - 702.
[7] Sudershan Mukherjee and Saif Khan Mohammed. 2016. Impact of Frequency Selectivity on the Information Rate Performance of CFO Impaired Single-Carrier Massive MU-MIMO uplink. IEEE Wireless Communication Letters, 5(6), 1-4.
[8] H Sari, G Karam, and I Jeanclaud. 1994. Frequency-domain equalization of mobile radio and terrestial broadcast channels. IEEE GLOBECOM, San Francisco, CA, USA, 1-5.
[9] Dirk Slock. 2008. Diversity-Multiplexing Tradeoff simplified Receivers for frequency-selective MIMO Channels. IEEE 16th European Signal Processing Conference, Lausanne, Switzerland, 1-5.
[10] A. E Ibhaze, P. E Orukpe and F. O Edeko. 2020. Visible Light Channel Modeling for High-data Transmission in the Oil and Gas Industry. Journal of Science and Technology, 12(2), 46-54.
[11] David Falconer, Sirikiat Lek Ariyavisitakul, Anader Benyamin-Seeyar, and Brian Eidson. 2002. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine, 40(4), 58 - 66.
[12] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude. 1995. Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine, 33(2), 100 - 109.
[13] S H Han and J H Lee. 2005. An overview of peak-to-average power ratio reduction technique for multicarrier transmission. IEEE Wireless Communication, 12(2), 56-65.
[14] Charles U Ndujiuba, Oluyinka Oni, and Augustus E Ibhaze. 2015. Comparative Analysis of Digital Modulation Techniques in LTE 4G Systems. Journal of Wireless Networking and Communications, 5(2), 60-66.
[15] J. A. C. Bingham. 1990. Multicarrier modulation for data transmission: an idea whose time has come. IEEE Communications Magazine, 28(5), 5 - 14.
[16] Harald Witschnig, Alois Koppler, Andreas Springer, Robert Weigel, and Mario Huemer. 2002. A Comparison of an OFDM System and a Single Carrier System Using Frequency Domain Equalization. European Transactions on Telecommunications banner, 13(5), 519-530.
[17] Zhaocheng Wang, Qi Wang, Wei Huang, and Zhengyuan Xu. 2017. Visible Light Communications: Modulation and Signal Processing. New Jersey: John Wiley & Sons, Inc.
[18] Oboyerulu E Agboje, Olabode B Idowu-Bismark, and Augustus E Ibhaze. 2017. Comparative Analysis of Fast Fourier Transform and Discrete Wavelet Transform Based MIMO-OFDM. International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), 7(2), 168 - 175.
[19] Charles U Ndujiuba and Augustus E Ibhaze. 2016. Dynamic Differential Modulation of Subcarriers in OFDM. Journal of Wireless Networking and Communications, 6(1), 21-28.
[20] A Czylwik. 1997. Comparison between adaptive OFDM and single carrier modulation with frequency domain equalization. IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 2, 865 - 869.
[21] A Czylwik. 1998. Synchronization for single carrier modulation with frequency domain equalization. VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, Ont., Canada , 3, 2277 - 2281.
[22] P. F. M. Smulders and H. T. Muskens. 1993. Performance of decision feedback equalization in MM-wave indoor radio systems. Proceedings of 2nd IEEE International Conference on Universal Personal Communications, Ottawa, Ontario, Canada, 890 - 893.
[23] N Benvenuto and S Tomasin. 2002. On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Transactions on Communications, 50(6), 947 - 955.
[24] Zhaocheng Wang , Tianqi Mao, and Qi Wang. 2017. Optical OFDM for visible light communications. IEEE 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 1190 - 1194.
[25] J Armstrong. 2009. OFDM for optical communications. IEEE Journal of Light Wave Technology, 27(3), 189 - 204.
[26] J Armstrong and A J Lowery. 2006. Power Efficient Optical OFDM. IEEE Electronics Letters, 42(6), 370 - 372.
[27] Dobroslav Tsonev, Sinan Sinanovic, and Harald Haas. 2012. Novel Unipolar Orthogonal Frequency Division Multiplexing (U-OFDM) for Optical Wireless. IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 1 - 5.
[28] A. E Ibhaze, P. E Orukpe and F. O Edeko. 2020. High Capacity Data Rate System: Review of Visible Light Communications Technology. Journal of Electronic Science and Technology.
[29] A. E Ibhaze, F. O Edeko and P. E Orukpe. 2021. Comparative Analysis of Optical Multicarrier Modulations: An Insight into Machine Learning-based Multicarrier Modulation. Gazi University Journal of Science.
[30] Seong Taek Chung and Andrea J. Goldsmith. 2001. Degrees of Freedom in Adaptive Modulation: A Unified View. IEEE Transactions on Communications, 49(9), 1561 - 1571.
[31] Liang Wu, Zaichen Zhang, Jian Dang, Jiangzhou Wang, and Huaping Liu. 2016. Polarity Information Coded Flip-OFDM for Intensity Modulation Systems. IEEE Communications Letters, 20(8), 1089 - 7798.
[32] Jie Lian, Yan Gao, and Dianbin Lian. 2019. Variable Pulse Width Unipolar Orthogonal Frequency Division Multiplexing for Visible Light Communication Systems. IEEE Access, 7, 31022 - 31030.
[33] Simeng Feng, Rong Zhang, Wei Xu, and Lajos Hanzo. 2019. Multiple Access Design for Ultra-Dense VLC Networks: Orthogonal vs Non-Orthogonal. IEEE Transactions on Communications, 67(3), 2218 - 2231.
[34] Kaiming Liu, Bihua Tang, and Yuan’an Liu. 2009. Adaptive Power Loading Based on Unequal-BER Strategy for OFDM Systems. IEEE Communications Letters, 13(7), 474 - 476.
[35] Ebrahim Bedeer, Octavia A. Dobre, Mohamed H. Ahmed, and Kareem E. Baddour. 2012. Optimal bit and power loading for OFDM systems with average BER and total power constraints. IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3685 - 3689.
[36] Igor Griva, Stephen G. Nash, and Ariela Sofer. 2009. Linear and Nonlinear Optimization. Philadelphia: Society for Industrial and Applied Mathematics.
[37] Edwin K. P. Chong and Stanislaw H. Zak. 2013. An Introduction to Optimization. New Jersey: John Wiley & Sons, Inc.
[38] Rajesh Kumar Arora. 2015. OPTIMIZATION Algorithms and Applications. London: Taylor & Francis Group, LLC.
[39] Randy L. Haupt and Douglas H. Werner. 2007. Genetic Algorithms in Electromagnetics. Canada: IEEE Press (A John Wiley & Sons, Inc.).
[40] Singiresu S. Rao. 2009. Engineering Optimization Theory and Practice. Canada: John Wiley & Sons, Inc.
[41] Hai Lin, Xianbin Wang, and Katsumi Yamashita. 2008. A Low-Complexity Carrier Frequency Offset Estimator Independent of DC Offset. IEEE Communication Letters, 12(7), 520 - 522.
[42] Thijs Castel et al. 2016. Adaptive subcarrier modulation for indoor public safety body-to-body networks. IEEE 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 1-5.
[43] Xuan Huang, Fang Yang, Hailong Zhang, Jun Ye, and Jian Song. 2019. Subcarrier and Power Allocations for Dimmable Ehanced ADO-OFDM with Iterative Interference Cancellation. IEEE Access, 7, 28422 - 28435.
[44] Alexander M. Wyglinski, Fabrice Labeau, and Peter Kabal. 2005. Bit Loading With BER-Constraint for Multicarrier Systems. IEEE Transactions on Wireless Communications, 4(4), 1383 - 1387.
Ibhaze, A., Edeko, F., & Orukpe, P. (2021). A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 269-282. https://doi.org/10.19113/sdufenbed.816121
AMA
Ibhaze A, Edeko F, Orukpe P. A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2021;25(2):269-282. doi:10.19113/sdufenbed.816121
Chicago
Ibhaze, Augustus, Frederick Edeko, and Patience Orukpe. “A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 2 (August 2021): 269-82. https://doi.org/10.19113/sdufenbed.816121.
EndNote
Ibhaze A, Edeko F, Orukpe P (August 1, 2021) A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 269–282.
IEEE
A. Ibhaze, F. Edeko, and P. Orukpe, “A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 25, no. 2, pp. 269–282, 2021, doi: 10.19113/sdufenbed.816121.
ISNAD
Ibhaze, Augustus et al. “A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (August 2021), 269-282. https://doi.org/10.19113/sdufenbed.816121.
JAMA
Ibhaze A, Edeko F, Orukpe P. A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:269–282.
MLA
Ibhaze, Augustus et al. “A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 2, 2021, pp. 269-82, doi:10.19113/sdufenbed.816121.
Vancouver
Ibhaze A, Edeko F, Orukpe P. A Novel Adaptive OFO-OFDM Modulation for Visible Light Communication. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(2):269-82.
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.