Research Article
BibTex RIS Cite

Synthesis, Characterization and Termal Studies of Cu, Ni and Pd Complexes with New SNS Pincer Type Ligand Bearing Pyridine Ring

Year 2021, , 383 - 389, 20.08.2021
https://doi.org/10.19113/sdufenbed.870359

Abstract

The new SNS pincer type ligand 2,6-bis(((trifluoromethyl)phenyl)thio)methyl)pyridine (SNS) was synthesized from the reaction of 2,6-bischloropyridine and 2-trifluoromethylbenzenethiol at a ratio of 1:2. Copper (SNS-Cu(II)), nickel (SNS-Ni(II)) and palladium (SNS-Pd(II)) complexes were synthesized from the 1:1 reaction of ligand and Cu(II), Ni(II), Pd(II) chloride salts, respectively. SNS complexes were obtained by meridional bonding of the metal (M) in the center of the complexes to both the nitrogen (N) atom and two sulfur (S) atoms. The synthesized compounds were characterized by NMR (ligand only), UV-Vis, FT-IR spectroscopic techniques, elemental analysis, TGA-DTA, melting point determination method. The complexes have a five coordinated triangular bipyramidal geometric structure. In addition, the molar conductivity values of the complexes were observed to be between 1.07-1.62 μS/cm. The complexes do not have conductivity properties. When the TGA curves of the complexes were examined, it was observed that their thermal stability was Pd>Cu>Ni.

References

  • [1] Moulton, C. J., Shaw, B. L. 1976. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl] phenyl. Journal of the Chemical Society Dalton Transactions, 11, 1020-1024.
  • [2] Van Koten, G., Timmer, K., Noltes, J. G., Spek, A. L. 1978. A novel type of Pt–C interaction and a model for the final stage in reductive elimination processes involving C–C coupling at Pt; synthesis and molecular geometry of [1,N,N′-η-2,6-bis{(dimethylamino) methyl}-toluene]iodoplatinum(II)Tetrafluoroborate. Journal of the Chemical Society, Chemical Communications, 6, 249-250.
  • [3] Hussein, A. Y., Nazir, A., Wei, S., Francis, V. 2014. Ruthenium pincer complexes: Ligand design and complex synthesis. Coordination Chemistry Reviews, 276, 112-152.
  • [4] Albrecht, M., Van Koten, G. 2001. Platinum group organometallics based on pincer complexes: sensors, switches, and catalysts in memory of Prof. Dr. Luigi M. Venanzi and his pioneering work in organometallic chemistry, particularly in PCP pincer chemistry. Angewandte Chemie International Edition, 40, 3750-3781.
  • [5] Van der Boom, M. E., Milstein, D. 2003. Cyclometalated phosphine-based pincer complexes: mechanistic insight in catalysis, coordination, and bond activation. Chemical Reviews, 103, 1759-1792.
  • [6] Creaser, C. S., Kaska, W. C. 1978. Complexes of 1,3- bis(dimethylphosphinomethyl) benzene with nickel(II), paladium(II) and iron(II) halides. Inorganica Chimica Acta, 30, 325-326.
  • [7] Empsall, H. D., Hyde, E. M., Markham, R., McDonald, W. S., Norton, M. C., Shaw, B. L., Weeks, B. 1977. Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. Journal of the Chemical Society, Chemical Communications, 589–590.
  • [8] Kelly, W. S. J., Ford, G. H., Nelson, S. M. 1971. Studies on the magnetic crossover in five-coordinate complexes of iron(II), cobalt(II), and nickel(II). Part I. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 388–396.
  • [9] Moulton, C. J., Shaw, B. L. 1976. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-tbutylphosphino) methyl]phenyl. Journal of the Chemical Society Dalton Transactions, 1020–1024.
  • [10] Khusnutdinova, J. R., Milstein, D. 2015. Metal–ligand cooperation. Angewandte Chemie International Edition, 54, 12236–12273.
  • [11] Albrecht, M., Van Koten, G. 2001. Platinum group organometallics based on ‘‘pincer’’ complexes: sensors, switches, and catalysts. Angewandte Chemie International Edition, 40, 3750–3781.
  • [12] Zohreh, N., Hosseini, S. H., Tavakolizadeh, M., Busuioc, C., Negrea, R. 2018. Palladium pincer complex incorporation onto the Fe3O4-entrapped cross-linked multilayered polymer as a high loaded nanocatalyst for oxidation. Journal of Molecular Liquid, 266, 393-494.
  • [13] Rimoldi, M., Fodor, D., Van Bokhoven, J. A., Mezzetti, A. 2015. Catalytic hydrogenation of liquid alkenes with a silica-grafted hydride pincer iridium(III) complex: support for a heterogeneous mechanism. Catalysis Science & Technology, 5, 4575-4586.
  • [14] Zeng, T., Yang, L., Hudson, R., Song, G., Moores, A. R., Li, C. J. 2011. Fe3O4 Nanoparticle-supported Copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct- addition of terminal alkynes to imines. Organic Letter, 13, 442-445.
  • [15] Zohreh, N., Jahani, M. 2017. NNN-pincer-copper complex immobilized on magnetic nanoparticles as a powerful hybrid catalyst for aerobic oxidative coupling and cycloaddition reactions in water. Journal of Molecular Catalysis A: Chemical, 426, 117-129.
  • [16] Machado, K., Mishra, J., Suzuki, S., Mishra, G. S. 2014. Synthesis of superparamagnetic carbon nanotubes immobilized Pt and Pd pincer complexes: highly active and selective catalysts towards cyclohexane oxidation with dioxygen. Dalton Transactions, 43, 17475-17482.
  • [17] Tamami, B., Mohaghegh Nezhad, M., Ghasemi, S., Farjadian, F. 2016. Modified merrifield resinsupported PCP pincer palladium nanoparticles as a new polymeric catalyst for cyanation of aryl iodides. Phosphorus, Sulfur, and Silicon and the Related Elements, 191, 123-128.
  • [18] Baran, T., Menteş, A. 2017. Construction of new biopolymer (chitosan)-based pincer-type Pd (II) complex and its catalytic application in Suzuki cross coupling reactions. Journal of Molecular Structure, 1134, 591-598.
  • [19] Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., Sánchez, F. 2013. Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145.
  • [20] McGuinness, D. S., Wasserscheid, P., Keim, W., Morgan, D., Dixon, J. T., Bollmann, A., Maumela, H., Hess, F., Englert, U. 2003. First Cr(III)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene. Journal of the American Chemical Society, 125, 5272-5273.
  • [21] McGuinness, D. S., Wasserscheid, P., Morgan, D. H., Dixon, J. T. 2005. Ethylene trimerization with mixed-donor ligand (N,P,S) chromium complexes: effect of ligand structure on activity and selectivity. Organometallics, 24, 552-556.
  • [22] Downing, S. P., Hanton, M. J., Slawin, A. M. Z., Tooze, R. P. 2009. Bis(alkylthioethyl)amine complexes of molybdenum. Organometallics, 28, 2417-2422.
  • [23] Shaffer, D. W., Szigethy, G., Ziller, J. W., Heyduk, A. F. 2013. Synthesis and characterization of a redox-active Bis(thiophenolato)amide ligand, [SNS]3−, and the homoleptic tungsten complexes, W[SNS]2 and W[ONO]2. Inorganic Chemistry, 52, 2110-2118.
  • [24] Sogukomerogulları, H. G., Aytar, E., Ulusoy, M., Demir, S., Dege, N., Richeson, S. D., Sönmez, M. 2017. Synthesis of complexes Fe, Co and Cu supported by ‘‘SNS” pincer ligandsn and their ability to catalytically form cyclic carbonates. Inorganica Chimica Acta, 471, 290-296.
  • [25] Maravalli, P. B., Dhumwad, S. D., Goudar, T. R. 1999. Synthetic, spectral, thermal and biological studies of lanthanide(III) complexes with a Schiff base derived from 3-N-methylpiperidino-4-amino-5mercapto-1,2,4-triazole. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29, 525–540.
  • [26] Wong, K. N., Colson, S. D. 1984. The FT-IR spectra of pyridine and pyridine-d51. Journal of Molecular Spectroscopy, 104, 129-151.
  • [27] Sogukomerogullari, H. G., Şen, F., Dinçer, M., Özdemir, N., Sönmez, M. 2017. Tridentate SNS pincer type ligand: synthesis, structural and spectroscopic analysis of a novel pyridine and m-xylene compound with thioether-bridge. Journal of Molecular Structure, 1136, 271-280.
  • [28] Miecznikowski, J. R., Lynn, M. A., Jasinski, J. P., Reinheimer, E., Bak, D. W., Pati, M., Butrick, E. E., Drozdoski, A. E. R., Archer, K. A., Villa, C. E., Lemons, E. G., Powers, E., Siu, M., Gomes, C. D., Morio, K. N. 2014. Synthesis, characterization, and computational study of three-coordinate SNS-copper(I) complexes based on bis-thione precursors. Journal of Coordination Chemistry, 67, 29-43.
  • [29] Zhang, J., Pan, M., Jiang, J., She, Z., Fan, Z., Su, C. 2011. Syntheses, crystal structures and antimicrobial activities of thioether ligands containing quinoline and pyridine terminal groups and their transition metal complexes. Inorganica Chimica Acta, 374, 269-277.
  • [30] Sogukomerogulları, H. G., Yalçın, Ş. P., Ceylan, Ü., Aytar, E., Aygün, M., Richeson, D. S., Sönmez, M. 2019. Synthesis of Fe and Cu metal complexes derived from ‘SNS’ Pincer type ligands and their efficient catalyst precursors for the chemicaln fixation of CO2. Journal of Chemical Sciences, 131, 32-44.
  • [31] Sönmez, M., Çelebi, M., Levent, A., Berber, İ., Şentürk, Z. 2010. A new pyrimidine-derived ligand, N-pyrimidine oxalamic acid, and its Cu (II), Co (II), Mn (II), Ni (II), Zn (II), Cd (II), and Pd (II) complexes: synthesis, characterization, electrochemical properties, and biological activity. Journal of Coordination Chemistry, 63, 848-860.
  • [32] Bai, S. Q., Quek, G. Y. H., Koh, L. L., Hor, T. S. A. 2010. Crystallographic analysis of different water–halide cluster blends in cationic [(SNS)Pd(II)] pincer complexes. CrystEngComm, 12, 226-233.
  • [33] Miecznikowski, J. R., Lynn, M. A., Jasinski, J. P., Lo, W., Bak, D. W., Pati, M., Butrick, E. E., Drozdoski, A. E. R., Archer, K. A., Villa, C. E., Lemons, E. G., Powers, E., Siu, M., Gomes, C. D., Bernier, N. A., Morio, K. N. 2014. Synthesis and characterization of five-coordinate copper(II) complexes based on tridentate SNS pincer ligand precursors. Polyhedron, 80, 157-165.
  • [34] Karam, A. R., Catari, E. L., Lopez-Linares, F., Agrifoglio, G., Albano, C.L., DiazBarrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., Gonzalez, T., Ortega, H. B., Joskowics, P. 2005. Synthesis, characterization and olefin polymerization studies of iron(II) and cobalt(II) catalysts bearing 2,6-bis(pyrazol-1yl)pyridines and 2,6-bis(pyrazol-1-ylmethyl)pyridines ligands. Applied Catalysis A: General, 280, 165-173.

Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları

Year 2021, , 383 - 389, 20.08.2021
https://doi.org/10.19113/sdufenbed.870359

Abstract

2,6-biskloropiridin ve 2-triflorometilbenzentiyol'ün 1:2 oranında reaksiyonundan yeni SNS pincer tip ligand olan 2,6-bis(((triflorometil)fenil)tiyo)metil)piridin (SNS) sentezlenmiştir. Ligand ve sırasıyla Cu(II), Ni(II) ve Pd(II) klorür tuzlarının 1:1 oranında reaksiyonundan bakır (SNS-Cu(II)), nikel (SNS-Ni(II)) ve palladyum (SNS-Pd(II)) kompleksleri sentezlenmiştir. Komplekslerin merkezinde bulunan metalin (M), hem azot (N) atomuna hem de iki taraftan kükürt (S) atomlarına meridyonel olarak bağlanması ile SNS kompleksleri elde edilmiştir. Sentezlenen bileşikler NMR (sadece ligand), UV-Vis, FT-IR spektroskopik teknikleri, elementel analiz, TGA-DTA, erime noktası tayini yöntemi ile karakterize edilmiştir. Kompleksler beş koordinasyonlu üçgen bipiramidal geometrik yapıya sahiptir. Ayrıca komplekslerin molar iletkenlik değerlerinin 1.07-1.62 μS/cm arasında olduğu görülmüştür. Kompleksler iletkenlik özelliğine sahip değildir. Komplekslerin TGA eğrileri incelendiğinde, termal kararlılıklarının Pd>Cu>Ni olduğu gözlemlenmiştir.

References

  • [1] Moulton, C. J., Shaw, B. L. 1976. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl] phenyl. Journal of the Chemical Society Dalton Transactions, 11, 1020-1024.
  • [2] Van Koten, G., Timmer, K., Noltes, J. G., Spek, A. L. 1978. A novel type of Pt–C interaction and a model for the final stage in reductive elimination processes involving C–C coupling at Pt; synthesis and molecular geometry of [1,N,N′-η-2,6-bis{(dimethylamino) methyl}-toluene]iodoplatinum(II)Tetrafluoroborate. Journal of the Chemical Society, Chemical Communications, 6, 249-250.
  • [3] Hussein, A. Y., Nazir, A., Wei, S., Francis, V. 2014. Ruthenium pincer complexes: Ligand design and complex synthesis. Coordination Chemistry Reviews, 276, 112-152.
  • [4] Albrecht, M., Van Koten, G. 2001. Platinum group organometallics based on pincer complexes: sensors, switches, and catalysts in memory of Prof. Dr. Luigi M. Venanzi and his pioneering work in organometallic chemistry, particularly in PCP pincer chemistry. Angewandte Chemie International Edition, 40, 3750-3781.
  • [5] Van der Boom, M. E., Milstein, D. 2003. Cyclometalated phosphine-based pincer complexes: mechanistic insight in catalysis, coordination, and bond activation. Chemical Reviews, 103, 1759-1792.
  • [6] Creaser, C. S., Kaska, W. C. 1978. Complexes of 1,3- bis(dimethylphosphinomethyl) benzene with nickel(II), paladium(II) and iron(II) halides. Inorganica Chimica Acta, 30, 325-326.
  • [7] Empsall, H. D., Hyde, E. M., Markham, R., McDonald, W. S., Norton, M. C., Shaw, B. L., Weeks, B. 1977. Synthesis and X-ray structure of an unusual iridium ylide or carbene complex. Journal of the Chemical Society, Chemical Communications, 589–590.
  • [8] Kelly, W. S. J., Ford, G. H., Nelson, S. M. 1971. Studies on the magnetic crossover in five-coordinate complexes of iron(II), cobalt(II), and nickel(II). Part I. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 388–396.
  • [9] Moulton, C. J., Shaw, B. L. 1976. Transition metal–carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-tbutylphosphino) methyl]phenyl. Journal of the Chemical Society Dalton Transactions, 1020–1024.
  • [10] Khusnutdinova, J. R., Milstein, D. 2015. Metal–ligand cooperation. Angewandte Chemie International Edition, 54, 12236–12273.
  • [11] Albrecht, M., Van Koten, G. 2001. Platinum group organometallics based on ‘‘pincer’’ complexes: sensors, switches, and catalysts. Angewandte Chemie International Edition, 40, 3750–3781.
  • [12] Zohreh, N., Hosseini, S. H., Tavakolizadeh, M., Busuioc, C., Negrea, R. 2018. Palladium pincer complex incorporation onto the Fe3O4-entrapped cross-linked multilayered polymer as a high loaded nanocatalyst for oxidation. Journal of Molecular Liquid, 266, 393-494.
  • [13] Rimoldi, M., Fodor, D., Van Bokhoven, J. A., Mezzetti, A. 2015. Catalytic hydrogenation of liquid alkenes with a silica-grafted hydride pincer iridium(III) complex: support for a heterogeneous mechanism. Catalysis Science & Technology, 5, 4575-4586.
  • [14] Zeng, T., Yang, L., Hudson, R., Song, G., Moores, A. R., Li, C. J. 2011. Fe3O4 Nanoparticle-supported Copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct- addition of terminal alkynes to imines. Organic Letter, 13, 442-445.
  • [15] Zohreh, N., Jahani, M. 2017. NNN-pincer-copper complex immobilized on magnetic nanoparticles as a powerful hybrid catalyst for aerobic oxidative coupling and cycloaddition reactions in water. Journal of Molecular Catalysis A: Chemical, 426, 117-129.
  • [16] Machado, K., Mishra, J., Suzuki, S., Mishra, G. S. 2014. Synthesis of superparamagnetic carbon nanotubes immobilized Pt and Pd pincer complexes: highly active and selective catalysts towards cyclohexane oxidation with dioxygen. Dalton Transactions, 43, 17475-17482.
  • [17] Tamami, B., Mohaghegh Nezhad, M., Ghasemi, S., Farjadian, F. 2016. Modified merrifield resinsupported PCP pincer palladium nanoparticles as a new polymeric catalyst for cyanation of aryl iodides. Phosphorus, Sulfur, and Silicon and the Related Elements, 191, 123-128.
  • [18] Baran, T., Menteş, A. 2017. Construction of new biopolymer (chitosan)-based pincer-type Pd (II) complex and its catalytic application in Suzuki cross coupling reactions. Journal of Molecular Structure, 1134, 591-598.
  • [19] Pintado-Sierra, M., Rasero-Almansa, A. M., Corma, A., Iglesias, M., Sánchez, F. 2013. Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 299, 137-145.
  • [20] McGuinness, D. S., Wasserscheid, P., Keim, W., Morgan, D., Dixon, J. T., Bollmann, A., Maumela, H., Hess, F., Englert, U. 2003. First Cr(III)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene. Journal of the American Chemical Society, 125, 5272-5273.
  • [21] McGuinness, D. S., Wasserscheid, P., Morgan, D. H., Dixon, J. T. 2005. Ethylene trimerization with mixed-donor ligand (N,P,S) chromium complexes: effect of ligand structure on activity and selectivity. Organometallics, 24, 552-556.
  • [22] Downing, S. P., Hanton, M. J., Slawin, A. M. Z., Tooze, R. P. 2009. Bis(alkylthioethyl)amine complexes of molybdenum. Organometallics, 28, 2417-2422.
  • [23] Shaffer, D. W., Szigethy, G., Ziller, J. W., Heyduk, A. F. 2013. Synthesis and characterization of a redox-active Bis(thiophenolato)amide ligand, [SNS]3−, and the homoleptic tungsten complexes, W[SNS]2 and W[ONO]2. Inorganic Chemistry, 52, 2110-2118.
  • [24] Sogukomerogulları, H. G., Aytar, E., Ulusoy, M., Demir, S., Dege, N., Richeson, S. D., Sönmez, M. 2017. Synthesis of complexes Fe, Co and Cu supported by ‘‘SNS” pincer ligandsn and their ability to catalytically form cyclic carbonates. Inorganica Chimica Acta, 471, 290-296.
  • [25] Maravalli, P. B., Dhumwad, S. D., Goudar, T. R. 1999. Synthetic, spectral, thermal and biological studies of lanthanide(III) complexes with a Schiff base derived from 3-N-methylpiperidino-4-amino-5mercapto-1,2,4-triazole. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29, 525–540.
  • [26] Wong, K. N., Colson, S. D. 1984. The FT-IR spectra of pyridine and pyridine-d51. Journal of Molecular Spectroscopy, 104, 129-151.
  • [27] Sogukomerogullari, H. G., Şen, F., Dinçer, M., Özdemir, N., Sönmez, M. 2017. Tridentate SNS pincer type ligand: synthesis, structural and spectroscopic analysis of a novel pyridine and m-xylene compound with thioether-bridge. Journal of Molecular Structure, 1136, 271-280.
  • [28] Miecznikowski, J. R., Lynn, M. A., Jasinski, J. P., Reinheimer, E., Bak, D. W., Pati, M., Butrick, E. E., Drozdoski, A. E. R., Archer, K. A., Villa, C. E., Lemons, E. G., Powers, E., Siu, M., Gomes, C. D., Morio, K. N. 2014. Synthesis, characterization, and computational study of three-coordinate SNS-copper(I) complexes based on bis-thione precursors. Journal of Coordination Chemistry, 67, 29-43.
  • [29] Zhang, J., Pan, M., Jiang, J., She, Z., Fan, Z., Su, C. 2011. Syntheses, crystal structures and antimicrobial activities of thioether ligands containing quinoline and pyridine terminal groups and their transition metal complexes. Inorganica Chimica Acta, 374, 269-277.
  • [30] Sogukomerogulları, H. G., Yalçın, Ş. P., Ceylan, Ü., Aytar, E., Aygün, M., Richeson, D. S., Sönmez, M. 2019. Synthesis of Fe and Cu metal complexes derived from ‘SNS’ Pincer type ligands and their efficient catalyst precursors for the chemicaln fixation of CO2. Journal of Chemical Sciences, 131, 32-44.
  • [31] Sönmez, M., Çelebi, M., Levent, A., Berber, İ., Şentürk, Z. 2010. A new pyrimidine-derived ligand, N-pyrimidine oxalamic acid, and its Cu (II), Co (II), Mn (II), Ni (II), Zn (II), Cd (II), and Pd (II) complexes: synthesis, characterization, electrochemical properties, and biological activity. Journal of Coordination Chemistry, 63, 848-860.
  • [32] Bai, S. Q., Quek, G. Y. H., Koh, L. L., Hor, T. S. A. 2010. Crystallographic analysis of different water–halide cluster blends in cationic [(SNS)Pd(II)] pincer complexes. CrystEngComm, 12, 226-233.
  • [33] Miecznikowski, J. R., Lynn, M. A., Jasinski, J. P., Lo, W., Bak, D. W., Pati, M., Butrick, E. E., Drozdoski, A. E. R., Archer, K. A., Villa, C. E., Lemons, E. G., Powers, E., Siu, M., Gomes, C. D., Bernier, N. A., Morio, K. N. 2014. Synthesis and characterization of five-coordinate copper(II) complexes based on tridentate SNS pincer ligand precursors. Polyhedron, 80, 157-165.
  • [34] Karam, A. R., Catari, E. L., Lopez-Linares, F., Agrifoglio, G., Albano, C.L., DiazBarrios, A., Lehmann, T. E., Pekerar, S. V., Albornoz, L. A., Atencio, R., Gonzalez, T., Ortega, H. B., Joskowics, P. 2005. Synthesis, characterization and olefin polymerization studies of iron(II) and cobalt(II) catalysts bearing 2,6-bis(pyrazol-1yl)pyridines and 2,6-bis(pyrazol-1-ylmethyl)pyridines ligands. Applied Catalysis A: General, 280, 165-173.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Güler Deger This is me 0000-0003-1684-3937

Hatice Gamze Soğukömeroğulları 0000-0002-0575-8131

Mehmet Sönmez 0000-0003-3127-666X

Publication Date August 20, 2021
Published in Issue Year 2021

Cite

APA Deger, G., Soğukömeroğulları, H. G., & Sönmez, M. (2021). Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 383-389. https://doi.org/10.19113/sdufenbed.870359
AMA Deger G, Soğukömeroğulları HG, Sönmez M. Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2021;25(2):383-389. doi:10.19113/sdufenbed.870359
Chicago Deger, Güler, Hatice Gamze Soğukömeroğulları, and Mehmet Sönmez. “Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand Ile Cu, Ni Ve Pd Komplekslerinin Sentezi, Karakterizasyonu Ve Termal Çalışmaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 2 (August 2021): 383-89. https://doi.org/10.19113/sdufenbed.870359.
EndNote Deger G, Soğukömeroğulları HG, Sönmez M (August 1, 2021) Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 2 383–389.
IEEE G. Deger, H. G. Soğukömeroğulları, and M. Sönmez, “Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 25, no. 2, pp. 383–389, 2021, doi: 10.19113/sdufenbed.870359.
ISNAD Deger, Güler et al. “Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand Ile Cu, Ni Ve Pd Komplekslerinin Sentezi, Karakterizasyonu Ve Termal Çalışmaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (August 2021), 383-389. https://doi.org/10.19113/sdufenbed.870359.
JAMA Deger G, Soğukömeroğulları HG, Sönmez M. Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25:383–389.
MLA Deger, Güler et al. “Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand Ile Cu, Ni Ve Pd Komplekslerinin Sentezi, Karakterizasyonu Ve Termal Çalışmaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 2, 2021, pp. 383-9, doi:10.19113/sdufenbed.870359.
Vancouver Deger G, Soğukömeroğulları HG, Sönmez M. Yeni Piridin Halkası Taşıyan SNS Pincer Tipi Ligand ile Cu, Ni ve Pd Komplekslerinin Sentezi, Karakterizasyonu ve Termal Çalışmaları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2021;25(2):383-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.