BibTex RIS Cite

EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü

Year 2012, Volume: 16 Issue: 1, 48 - 55, 14.07.2014

Abstract

Bu çalışmada lineer olmayan kısmi türevli Equal Width (EW) denkleminin konum ayrıştırması yapılarak radial basis
fonksiyon collocation yöntemi ile sayısal çözümü yapılmıştır. Hesaplamalarda farklı standart radial basis fonksiyonlar kullanılmıştır.
Metodun geçerliliğini göstermek için tek solitary dalga hareketi, iki ve üç solitary dalga etkileşimi ile Maxwell başlangıç koşulu
içeren test problemleri kullanılmış ve her bir test problemi için dalga hareketlerinin grafikleri gösterilmiştir. Analitik sonucu bilinen
tek solitary dalga hareketi test problemi için hata normları ile her bir test problemi için kütle, enerji ve momentum korunumlarının
değerleri hesaplanmıştır. Elde edilen sonuçlar analitik sonuçlar ve literatürde yer alan diğer sayısal sonuçlarla karşılaştırılmıştır.

References

  • Dereli, Y., Schaback, R. 2010. The Meshless Kernel-Based Method of Lines for Solving the Equal Width Equation. Georg-August Göttingen University Institut für Numerische und Angewandte Mathematik Preprint-Serie, Number: 2010-27.
  • Doğan, A. 2005. Application of Galerkin's metod to equal width wave equation. Appl. Math. and Comput, 160, 65-76.
  • Esen, A. 2005. A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. and Comput., 168, 270-282.
  • Gardner, L.R.T., Gardner, G.A. 1992. Solitary waves of the equal width wave equation. J. Comput. Phys., 101, 218-223.
  • Hardy, R.L. 1971. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 76, 1905-1915.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl., 19, 127-145.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19, 146-161.
  • Morrison, P.J., Meiss, J.D., Carey, J.R. 1984. Scattering of RLW solitary waves. Physica, 11D, 324-336.
  • Olver, P.J. 1979. Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc., 85, 143-159.
  • Raslan, K.R. 2004. A computational method for the equal width equation. Int. J. Comp. Math., 81, 63-72.
  • Rubin, S.G., Graves, R.A. 1975. Cubic spline approximation for problems in fluid mechanics. Nasa TR R-436, Washington, DC.
  • Saka, B. 2006. A finite element method for equal width equation. Appl. Math. and Comput., 175, 730747.
  • Saka, B., Dağ, İ., Dereli, Y., Korkmaz, A. 2008. Three different methods for numericalsolution of the EW equation. Engineering Analysis with Boundary Elements, 32, 556-566.
  • Zaki, S.I. 2000. A least-squares finite element scheme fort he EW equation. Comput. Methods Appl. Mech. Eng., 189, 587-594.
Year 2012, Volume: 16 Issue: 1, 48 - 55, 14.07.2014

Abstract

References

  • Dereli, Y., Schaback, R. 2010. The Meshless Kernel-Based Method of Lines for Solving the Equal Width Equation. Georg-August Göttingen University Institut für Numerische und Angewandte Mathematik Preprint-Serie, Number: 2010-27.
  • Doğan, A. 2005. Application of Galerkin's metod to equal width wave equation. Appl. Math. and Comput, 160, 65-76.
  • Esen, A. 2005. A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. and Comput., 168, 270-282.
  • Gardner, L.R.T., Gardner, G.A. 1992. Solitary waves of the equal width wave equation. J. Comput. Phys., 101, 218-223.
  • Hardy, R.L. 1971. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 76, 1905-1915.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl., 19, 127-145.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19, 146-161.
  • Morrison, P.J., Meiss, J.D., Carey, J.R. 1984. Scattering of RLW solitary waves. Physica, 11D, 324-336.
  • Olver, P.J. 1979. Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc., 85, 143-159.
  • Raslan, K.R. 2004. A computational method for the equal width equation. Int. J. Comp. Math., 81, 63-72.
  • Rubin, S.G., Graves, R.A. 1975. Cubic spline approximation for problems in fluid mechanics. Nasa TR R-436, Washington, DC.
  • Saka, B. 2006. A finite element method for equal width equation. Appl. Math. and Comput., 175, 730747.
  • Saka, B., Dağ, İ., Dereli, Y., Korkmaz, A. 2008. Three different methods for numericalsolution of the EW equation. Engineering Analysis with Boundary Elements, 32, 556-566.
  • Zaki, S.I. 2000. A least-squares finite element scheme fort he EW equation. Comput. Methods Appl. Mech. Eng., 189, 587-594.
There are 14 citations in total.

Details

Primary Language English
Journal Section MÜHENDİSLİK ve MİMARLIK BİLİMLERİ
Authors

Ayşe Kaplan This is me

Yılmaz Dereli This is me

Publication Date July 14, 2014
Published in Issue Year 2012 Volume: 16 Issue: 1

Cite

APA Kaplan, A., & Dereli, Y. (2014). EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(1), 48-55. https://doi.org/10.19113/sdufbed.94750
AMA Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. J. Nat. Appl. Sci. March 2014;16(1):48-55. doi:10.19113/sdufbed.94750
Chicago Kaplan, Ayşe, and Yılmaz Dereli. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, no. 1 (March 2014): 48-55. https://doi.org/10.19113/sdufbed.94750.
EndNote Kaplan A, Dereli Y (March 1, 2014) EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16 1 48–55.
IEEE A. Kaplan and Y. Dereli, “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”, J. Nat. Appl. Sci., vol. 16, no. 1, pp. 48–55, 2014, doi: 10.19113/sdufbed.94750.
ISNAD Kaplan, Ayşe - Dereli, Yılmaz. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16/1 (March 2014), 48-55. https://doi.org/10.19113/sdufbed.94750.
JAMA Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. J. Nat. Appl. Sci. 2014;16:48–55.
MLA Kaplan, Ayşe and Yılmaz Dereli. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 16, no. 1, 2014, pp. 48-55, doi:10.19113/sdufbed.94750.
Vancouver Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. J. Nat. Appl. Sci. 2014;16(1):48-55.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.