Research Article
BibTex RIS Cite

Parametric Vibration of Three-Layered Cylindrical Shells with Functionally Graded Core

Year 2015, Volume: 19 Issue: 1, 47 - 56, 24.03.2015

Abstract

In this study, the parametric vibration of three-layered cylindrical shells with functionally graded (FG) core is investigated. Firstly, analytical models of an FG core, which uses the intermediate member and outer sheath layers of the cylindrical shell formed from metal-rich and ceramic-rich represented as ternary systems. The governing equations of three-layered cylindrical shells with an FG core are derived and are reduced Mathieu-Hill equation by using Galerkin method. The expressions for non-dimensional frequency, critical axial load and boundaries of instability regions of three-layered cylindrical shell with an FG core are found. The expressions for non-dimensional frequency parameter, critical axial load and boundaries of instability regions are obtained for the monolayer FGM, pure metal and pure ceramic cylindrical shells, as a special case. Finally, the effects of variations of volume fractions, shell characteristics and variations of the thickness of a core on the values of critical parameters of three-layered cylindrical shells made of different types of FG core are studied numerically. Comparisons are made with the available studies in the open literature to validate this study

References

  • Anderson, T.A., 2003. A 3-D Elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Composite Structures, 60, 265–274.
  • Bespalova, E.I., Urusova, G.P., 2013. Dynamic instability of shells of revolution with alternating curvature under periodic loading. International Applied Mechanics, 49, 521–527.
  • Birman, V., 1988. Parametric vibrations of long cylindrical shells subject to transverse static load. International Journal of Mechanical Sciences, 30, 613–623.
  • Bolotin, V.V., 1956. The Dynamic Stability of Elastic Systems. Gostekhizdat, Moscow, 600pp.
  • Bui, T.Q., Khosravifard, A., Zhang, C.H., Hematiyan, M.R., Golub, M.V., 2013. Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Engineering Structures, 47, 90–104.
  • Koizumi, M., 1997. FGM Activities in Japan. Composites Part B Engineering, 28, 1–4.
  • Lam, K.Y., Ng, T.Y., 1998. Dynamic stability analysis of laminated composite cylindrical shells subjected to conservative periodic axial loads. Composites Part B: Engineering, 29, 769–785.
  • Li, S.R., Fu, X.H., Batra, R.C., 2010. Free vibration of three layered circular cylindrical shells with functionally graded middle layer. Mechanics Research Communications, 37, 577–580.
  • Loy, C.T., Lam, K.Y., Reddy J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
  • Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., 1999. Functionally Graded Materials: Design, Processing, and Applications. Kluwer, Massachusetts, 352pp.
  • Ng, T.Y., Lam, K.Y., Reddy, J.N., 1998. Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. Journal of Sound and Vibration, 214, 513–529.
  • Ng, T.Y., Lam, K.Y., Liew, K.M., Reddy, J.N., 2001. Dynamic analysis of functionally graded cylindrical shell subjected under periodic axial loading. International Journal Solids and Structures Journal of Sound and Vibration, 38, 1295–1309.
  • Pellicano, F., 2011. Dynamic instability of a circular cylindrical shell carrying a top mass under base excitation: Experiments and theory. International Journal of Solids and Structures, 48, 408–427.
  • Pitakthapanaphong, S., Busso, E.P., 2002. Self- consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
  • Radwan, H.R., Genin, J., 1978. Dynamic instability in cylindrical shells. Journal of Sound and Vibration, 56, 373–382.
  • Reddy, J.N., Chin, C.D., 1998. Thermo-Mechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses, 21, 593–626.
  • Reddy, J.N., 2004. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Second Ed, CRC Press, 856pp.
  • Sburlati, R., 2012. An axisymmetric elastic analysis for circular sandwich panels with functionally graded cores. Composites: Part B, 43, 1039–1044.
  • Shen, H.S., 2009. Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 280pp.
  • Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
  • Sofiyev, A.H., 2007. Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads. Structural Engineering and Mechanics, 27, 365–391.
  • Sofiyev, A.H., Kuruoğlu N., 2015. Dynamic instability of three-layered cylindrical shells containing an FGM interlayer. 93, 10-21. Walled
  • Structures, Suresh, S., Mortensen, A., 1998. Fundamentals of Functionally Graded Materials. IOM Communications Limited, United Kingdom, London, 168pp.
  • Touloukian, Y.S., 1967. Thermo Physical Properties of High Temperature Solid Materials. McMillan, New York, 748pp.
  • Volmir, A.S., 1967. Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air
  • Force Base, Ohio, AD628508.
  • Woodward, B., Kashtalyan, M., 2011. 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings. International Journal of Mechanical Sciences, 53, 872–885.
  • Yang, J., Shen, H.S., 2003. Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. Journal of Sound and Vibration, 261, 871–893.
  • Yao, J.C., 1965. Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads. Journal of Applied Mechanics, 32, 109–115. 56

Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi

Year 2015, Volume: 19 Issue: 1, 47 - 56, 24.03.2015

Abstract

Bu çalışmasında, çekirdeği fonksiyonel değişimli malzemelerden (FDM'ler) ve dış katmanları zenginleştirilmiş seramik ve metalden oluşan üç tabakalı silindirik kabukların statik ve zamana bağlı periyodik değişen yükler etkisi altında parametrik titreşimi incelenmektedir. Ara eleman olarak kullanılan fonksiyonel değişimli (FD) çekirdek ve zenginleştirilmiş metal ve seramikten oluşturulan dış tabakalardan oluşan üçlü sistemin analitik modeli sunulmaktadır. Fonksiyonel değişimli çekirdeğe (FDÇ'e) sahip sandviç silindirik kabukların statik ve zamana bağlı periyodik değişen eksenel basınç yükleri altında dinamik stabilite ve deformasyon uygunluk denklemleri türetilmektedir. Temel denklemler, Galerkin Yöntemi uygulanarak Mathieu-Hill denklemine dönüştürülmekte ve çözülerek FDÇ üç tabakalı silindirik kabukların kararsızlık bölgeleri, frekans parametresi ve kritik statik yük için ifadeler elde edilmektedir. Bu ifadelerden pür seramik, pür metal ve pür FD silindirik kabuklar için uygun ifadeler özel olarak elde edilmektedir. Son olarak kararsızlık bölgelerinin sınarlarına, FD çekirdek çeşitlerinin ve hacim kesir bileşenleri değişiminin, kabuk karakteristikleri ve çekirdek-kabuk kalınlıkları oranı değişiminin etkileri kapsamlı bir şekilde incelenmektedir. Elde edilen sonuçlar açık literatürde bulunan sonuçlarla karşılaştırılarak doğruluğu teyit edilmektedir.

References

  • Anderson, T.A., 2003. A 3-D Elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Composite Structures, 60, 265–274.
  • Bespalova, E.I., Urusova, G.P., 2013. Dynamic instability of shells of revolution with alternating curvature under periodic loading. International Applied Mechanics, 49, 521–527.
  • Birman, V., 1988. Parametric vibrations of long cylindrical shells subject to transverse static load. International Journal of Mechanical Sciences, 30, 613–623.
  • Bolotin, V.V., 1956. The Dynamic Stability of Elastic Systems. Gostekhizdat, Moscow, 600pp.
  • Bui, T.Q., Khosravifard, A., Zhang, C.H., Hematiyan, M.R., Golub, M.V., 2013. Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Engineering Structures, 47, 90–104.
  • Koizumi, M., 1997. FGM Activities in Japan. Composites Part B Engineering, 28, 1–4.
  • Lam, K.Y., Ng, T.Y., 1998. Dynamic stability analysis of laminated composite cylindrical shells subjected to conservative periodic axial loads. Composites Part B: Engineering, 29, 769–785.
  • Li, S.R., Fu, X.H., Batra, R.C., 2010. Free vibration of three layered circular cylindrical shells with functionally graded middle layer. Mechanics Research Communications, 37, 577–580.
  • Loy, C.T., Lam, K.Y., Reddy J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
  • Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., 1999. Functionally Graded Materials: Design, Processing, and Applications. Kluwer, Massachusetts, 352pp.
  • Ng, T.Y., Lam, K.Y., Reddy, J.N., 1998. Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. Journal of Sound and Vibration, 214, 513–529.
  • Ng, T.Y., Lam, K.Y., Liew, K.M., Reddy, J.N., 2001. Dynamic analysis of functionally graded cylindrical shell subjected under periodic axial loading. International Journal Solids and Structures Journal of Sound and Vibration, 38, 1295–1309.
  • Pellicano, F., 2011. Dynamic instability of a circular cylindrical shell carrying a top mass under base excitation: Experiments and theory. International Journal of Solids and Structures, 48, 408–427.
  • Pitakthapanaphong, S., Busso, E.P., 2002. Self- consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
  • Radwan, H.R., Genin, J., 1978. Dynamic instability in cylindrical shells. Journal of Sound and Vibration, 56, 373–382.
  • Reddy, J.N., Chin, C.D., 1998. Thermo-Mechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses, 21, 593–626.
  • Reddy, J.N., 2004. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Second Ed, CRC Press, 856pp.
  • Sburlati, R., 2012. An axisymmetric elastic analysis for circular sandwich panels with functionally graded cores. Composites: Part B, 43, 1039–1044.
  • Shen, H.S., 2009. Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 280pp.
  • Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
  • Sofiyev, A.H., 2007. Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads. Structural Engineering and Mechanics, 27, 365–391.
  • Sofiyev, A.H., Kuruoğlu N., 2015. Dynamic instability of three-layered cylindrical shells containing an FGM interlayer. 93, 10-21. Walled
  • Structures, Suresh, S., Mortensen, A., 1998. Fundamentals of Functionally Graded Materials. IOM Communications Limited, United Kingdom, London, 168pp.
  • Touloukian, Y.S., 1967. Thermo Physical Properties of High Temperature Solid Materials. McMillan, New York, 748pp.
  • Volmir, A.S., 1967. Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air
  • Force Base, Ohio, AD628508.
  • Woodward, B., Kashtalyan, M., 2011. 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings. International Journal of Mechanical Sciences, 53, 872–885.
  • Yang, J., Shen, H.S., 2003. Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. Journal of Sound and Vibration, 261, 871–893.
  • Yao, J.C., 1965. Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads. Journal of Applied Mechanics, 32, 109–115. 56
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MÜHENDİSLİK ve MİMARLIK BİLİMLERİ
Authors

Abdullah Avey This is me

İbrahim Yıldız This is me

Publication Date March 24, 2015
Published in Issue Year 2015 Volume: 19 Issue: 1

Cite

APA Avey, A., & Yıldız, İ. (2015). Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1), 47-56.
AMA Avey A, Yıldız İ. Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi. J. Nat. Appl. Sci. April 2015;19(1):47-56.
Chicago Avey, Abdullah, and İbrahim Yıldız. “Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19, no. 1 (April 2015): 47-56.
EndNote Avey A, Yıldız İ (April 1, 2015) Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19 1 47–56.
IEEE A. Avey and İ. Yıldız, “Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi”, J. Nat. Appl. Sci., vol. 19, no. 1, pp. 47–56, 2015.
ISNAD Avey, Abdullah - Yıldız, İbrahim. “Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 19/1 (April 2015), 47-56.
JAMA Avey A, Yıldız İ. Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi. J. Nat. Appl. Sci. 2015;19:47–56.
MLA Avey, Abdullah and İbrahim Yıldız. “Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 19, no. 1, 2015, pp. 47-56.
Vancouver Avey A, Yıldız İ. Fonksiyonel Değişimli Çekirdeğe Sahip Üç Tabakalı Silindirik Kabukların Parametrik Titreşimi. J. Nat. Appl. Sci. 2015;19(1):47-56.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.