BibTex RIS Cite

Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu

Year 2016, Volume: 20 Issue: 2, 0 - , 04.06.2016
https://doi.org/10.19113/sdufbed.44928

Abstract

Bu çalışmada karbon elyaf takviyeli-karbon nano tüp ile modifiye edilmiş epoksi kompozit malzemelerin üretilmesi ve üretilen kompozit malzemelerin mekanik, termal ve kırılma yüzeylerinin karakterizasyonu hedeflenmiştir. Bu hedef doğrultusunda matris elemanı olarak çok katmanlı karbon nano tüp içeren epoksi nano kompozit, dokuma karbon kumaş ise 4/4 dimi takiveye elemanı olarak kompozit malzeme üretiminde kullanılmıştır. Çalışma kapsamında ayrıca, karbon nano tüp ile matris modifikasyonu işleminin etkisini belirlemek için saf epoksi reçine sisteminin matris malzemesi olarak kullanıldığı kompozit numuneleri de üretilmiştir. Üretilen kompozitlerde karbon nano tüp ile matris modifikasyonu işleminin mekanik performans özellikleri üzerindeki etkisi çekme, eğilme ve düzlem içi kayma testleri ile değerlendirilmiştir. Kompozit malzemlerin termal karakterizasyonu ise simültane termal analiz ünitesinde (TG-DTG/TG-DSC/TG), diferansiyel termal gravimetre (TG-DTG) ve diferansiyel taramalı kalorimetre (DSC) analizleri ile yapılmıştır. Çekme testi sonucu kırılmış veya hasarlı parçalardan optik mikroskop ve taramalı elektron mikroskobu (SEM) cihazı ile alınan yüzey görüntüleri incelenerek kompozit malzemelerde hasar ilerleme mekanizmaları tespit edilmiştir. Elde edilen sonuçlar, epoksi reçine sistemine karbon nano tüp dispersiyonu ile karbon elyaf takviyeli polimerik kompozit malzemelerin mekanik ve termal özelliklerinde iyileşmeler sağlandığını göstermektedir. Ayrıca, SEM ve optik mikroskop görüntüleri de mekanik karakterizasyon aşamasında elde edilen kompozit malzeme performans iyileşmesini desteklemektedir.

References

  • [1] Şahin, Y., 2000. Kompozit Malzemelere Giriş. Gazi Kitabevi, 1-16, 37- 41, 65-68, 79-88, Ankara.
  • [2] Demirel, A., 2007. Karbon Elyaf Takviyeli Epoksi Kompozit Malzemelerin Karakterizasyonu. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 135s, Ankara.
  • [3] Acar, V., Akbulut, H., Sarıkanat, M., Seydibeyoğlu, M.Ö., Seki Y., Erden S., 2013. Karbon Elyaf Takviyeli Prepreg Kompozitlerde Arayüzey Mekaniğinin Karbon Nanoyapı Katkısıyla İyileştirilmesi. Makine Teknolojileri Elektronik Dergisi, 10, 43-51.
  • [4] Lubineau, G., Rahaman, A., 2012. A Review of Strategies for Improving the Degradation Properties of Laminated Continuous-Fiber/Epoxy Composites with Carbon-Based Nanoreinforcements. Carbon, 50, 2377-2395.
  • [5] Hudnut, S.W., Chung, D.D.L., 1995. Use of Submicron Diameter Carbon Filaments for Reinforcement Between Continuous Carbon-Fiber Layers in a Polymer-Matrix Composite. Carbon, 33(11):1627-31.
  • [6] Thostenson, E.T., Chou, T.W., 2002. Aligned Multi-walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization. J Phys D: Appl Phys, 35(16):L77.
  • [7] Bai, J., Allaoui, A.,2003. Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites-Experimental Investigation. Compos A, 34, 689-694.
  • [8] Gojny, F., Wichmann, M., Fiedler, B., Schulte, K., 2005. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites-A Comparative Study. Compos Sci Technol, 65, 2300-2313.
  • [9] Zhou, Y., Pervin, F., Lewis, L., Jeelani, S., 2008. Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-walled Carbon Nanotubes. Mater Sci Eng A, 475, 157-65.
  • [10] Wicks S.S. et al., 2009. Interlaminar Fracture Toughness of a Woven Advanced Composite Reinforced with Aligned Carbon Nanotubes. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Palm Springs, CA.
  • [11] Yamamoto, N., Guzman de Villoria, R., Wardle, B.L., 2012. Electrical and Thermal Property Enhancement of Fiber-Reinforced Polymer Laminate Composites Through Controlled Implementation of Multi-walled Carbon Nanotubes. Composites Science and Technology, 72, 2009-2015.
  • [12] Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.J., 2002. Appl.Phys. 2002, 91, 6034-6037.
  • [13] Thostenson, E.T., 2003. Carbon Nanotube-Reinforced Composites: Processing, Characterization and Modeling. Ph.D. Thesis, University of Delaware.
  • [14] Kashiwagi T et al., 2005. Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites. Nat Mater., 4(12):928-33.
  • [15] Koo, J.,2006. Polymer Nanocomposites: Processing, Characterization, and Applications. McGraw-Hill.
  • [16] Vlasveld, D.P.N., Bersee, H.E.N., Picken, S.J., 2005. Nanocomposite Matrix for Increased Fibre Composite Strength. Polymer, 46(23):10269-78.
  • [17] Çelep, Ş., 2007. Nanoteknoloji ve Tekstilde Uygulama Alanları, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 171, Adana.
  • [18] De Greef, N., Gorbatikh, L., Lomov, S.V., Verpoest, I., 2011. Damage Development in Woven Carbon Fiber/Epoxy Composites Modified with Carbon Nanotubes Under Tension in the Bias Direction. Composites Part A, 42: 1635-44.
  • [19] Bekyarova, E, Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., 2007. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites. Langmuir, 23(7):3970-4.
  • [20] Soliman, M., Al-Haik, M., Taha, M.R., 2012b. On and Off-Axis Tension Behavior of Fiber Reinforced Polymer Composites Incorporating Multi-walled Carbon Nanotubes, J Compos Mater., 46(14), 1661-75.
  • [21] Dong, L., Hou, F., Li, Y., Wang, L., Gao, H., Tang, Y., 2014. Composites Preparation of Continuous Carbon Nanotube Networks in Carbon Fiber/Epoxy Composite. Composite: Part A, 56, 248-255.
  • [22] Spinteks, 2014. Erişim Tarihi: 14.07.2014. http://www.Spinteks.Com/
  • [23] De Greef, N., Gorbatikh, L., Godara, A., Mezzo, L., Lomov, S.V., Verpoest, I. 2011. The Effect of Carbon Nanotubes on the Damage Development in Carbon Fiber/Epoxy Composites. Carbon, 49, 4650-64.
  • [24] ASTM D 3171, 2004. Standard Test Method for Constituent Content of Composite Materials, Space Simulation; Aerospace and Aircraft; Composite Materials, Annual Book of ASTM, Philadelphia.
  • [25] Karcı, A., 2009. Uçak Yapısal Parçalarında Kullanılan Karbon/Epoksi Kompozit Malzemelerin Yorulma Davranışı. Fen Bilimleri Enstitüsü, Anadolu Üniversitesi, Doktora Tezi, 130, Eskişehir.
  • [26] ASTM D 792, 1985. Standard Test Method for Specific Gravity and Density of Plastics by Displacement, Space Simulation; Aerospace and Aircraft; Composite Materials, ASTM Standards Volume, Philadelphia.
  • [27] ASTM D 3039, 2005. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Space Simulation; Aerospace and Aircraft; Composite Materials, Annual Book of ASTM, Philadelphia.
  • [28] ASTM D 790-00, 2001. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Philadelphia.
  • [29] ISO 14129:1997, 2012. Fibre-Reinforced Plastic Composites-Determination of the In-Plane Shear Stress/Shear Strain Response, Including the In-Plane Shear Modulus and Strength, by the Plus or Minus 45 Degree Tension Test Method.
  • [30] Korkmaz, N., 2014. Karbon Elyaf Takviyeli Dokuma Kumaş İçeren Kompozit Malzeme Üretimi ve Mekanik Özelliklerinin Belirlenmesi Üzerine Bir Çalışma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 158s, Isparta.
  • [31] http://snebulos.mit.edu/projects/reference/MIL-STD/MIL-HDBK-17-1F.pdf, Erişim Tarihi: 30.08. 2014.
  • [32] Godora, A, Mezzo, L., Luizi. F., Warrier, A., Lomov, S.V, Van Vuure A.W., 2009. Influence of Carbon Nanotubes Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fibre/Epoxy Composites. Carbon, 47, 2914-23.
  • [33] Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Paipetis A., 2009. Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-wall Carbon Nanotubes. J Compos Mater , 43(9):977-85.
  • [34] Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A., 2010. Impact and After-Impact Properties of Carbon Fibre Reinforced Composites Enhanced with Multi-wall Carbon Nanotubes. Compos Sci Technol, 70, 553-63.
  • [35] Ivanov, E., Kotsilkova, R., Krusteva, E., Logakis, E., Kyritsis, A., Pissis, P., Silvestre, C., Duraccio, D., Pezzuto, M., 2011. Effects of Processing Conditions on Rheological, Thermal, and Electrical Properties of Multiwall Carbon Nanotube/Epoxy Resin Composites. Polymer Physics, 49, 431-442.
  • [36] Qiu, S.L., Wang, C.S., Wang,Y.T., Liu, C.G., Chen, H.F., Xie, X.Y., Huang, Y.A., Cheng, R.S., 2011. Effects of Graphene Oxides on the Cure Behaviors of a Tetrafunctional Epoxy Resin. Express Polymer Letters, 5(9), 2011, 809-818.
  • [37] Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H., Schulte, K., 2006. Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites, Polymer, 47(6): 2036-2045.
  • [38] Asharif B., Guan J., Mirjalili V., Zhang Y., Chun L., Hubert P., 2011. Enhancement of Mechanical Performance of Epoxy/Carbon Fiber Laminate Composites Using Single-Walled Carbon Nanotubes. Compos Sci Technol, 71, 1569-78.
  • [39] Tehrani, M., Boroujeni, A.Y., Hartman,T.B., Haugh, T.P., Case, S.W., Al-Haik, M.S., 2013. Mechanical Characterization and Impact Damage Assessment of a Woven Carbon Fiber Reinforced Carbon Nanotube-Epoxy Composite. Composites Science and Technology, 75, 42-48.
Year 2016, Volume: 20 Issue: 2, 0 - , 04.06.2016
https://doi.org/10.19113/sdufbed.44928

Abstract

References

  • [1] Şahin, Y., 2000. Kompozit Malzemelere Giriş. Gazi Kitabevi, 1-16, 37- 41, 65-68, 79-88, Ankara.
  • [2] Demirel, A., 2007. Karbon Elyaf Takviyeli Epoksi Kompozit Malzemelerin Karakterizasyonu. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 135s, Ankara.
  • [3] Acar, V., Akbulut, H., Sarıkanat, M., Seydibeyoğlu, M.Ö., Seki Y., Erden S., 2013. Karbon Elyaf Takviyeli Prepreg Kompozitlerde Arayüzey Mekaniğinin Karbon Nanoyapı Katkısıyla İyileştirilmesi. Makine Teknolojileri Elektronik Dergisi, 10, 43-51.
  • [4] Lubineau, G., Rahaman, A., 2012. A Review of Strategies for Improving the Degradation Properties of Laminated Continuous-Fiber/Epoxy Composites with Carbon-Based Nanoreinforcements. Carbon, 50, 2377-2395.
  • [5] Hudnut, S.W., Chung, D.D.L., 1995. Use of Submicron Diameter Carbon Filaments for Reinforcement Between Continuous Carbon-Fiber Layers in a Polymer-Matrix Composite. Carbon, 33(11):1627-31.
  • [6] Thostenson, E.T., Chou, T.W., 2002. Aligned Multi-walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization. J Phys D: Appl Phys, 35(16):L77.
  • [7] Bai, J., Allaoui, A.,2003. Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites-Experimental Investigation. Compos A, 34, 689-694.
  • [8] Gojny, F., Wichmann, M., Fiedler, B., Schulte, K., 2005. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites-A Comparative Study. Compos Sci Technol, 65, 2300-2313.
  • [9] Zhou, Y., Pervin, F., Lewis, L., Jeelani, S., 2008. Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-walled Carbon Nanotubes. Mater Sci Eng A, 475, 157-65.
  • [10] Wicks S.S. et al., 2009. Interlaminar Fracture Toughness of a Woven Advanced Composite Reinforced with Aligned Carbon Nanotubes. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Palm Springs, CA.
  • [11] Yamamoto, N., Guzman de Villoria, R., Wardle, B.L., 2012. Electrical and Thermal Property Enhancement of Fiber-Reinforced Polymer Laminate Composites Through Controlled Implementation of Multi-walled Carbon Nanotubes. Composites Science and Technology, 72, 2009-2015.
  • [12] Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W.J., 2002. Appl.Phys. 2002, 91, 6034-6037.
  • [13] Thostenson, E.T., 2003. Carbon Nanotube-Reinforced Composites: Processing, Characterization and Modeling. Ph.D. Thesis, University of Delaware.
  • [14] Kashiwagi T et al., 2005. Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites. Nat Mater., 4(12):928-33.
  • [15] Koo, J.,2006. Polymer Nanocomposites: Processing, Characterization, and Applications. McGraw-Hill.
  • [16] Vlasveld, D.P.N., Bersee, H.E.N., Picken, S.J., 2005. Nanocomposite Matrix for Increased Fibre Composite Strength. Polymer, 46(23):10269-78.
  • [17] Çelep, Ş., 2007. Nanoteknoloji ve Tekstilde Uygulama Alanları, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 171, Adana.
  • [18] De Greef, N., Gorbatikh, L., Lomov, S.V., Verpoest, I., 2011. Damage Development in Woven Carbon Fiber/Epoxy Composites Modified with Carbon Nanotubes Under Tension in the Bias Direction. Composites Part A, 42: 1635-44.
  • [19] Bekyarova, E, Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., 2007. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites. Langmuir, 23(7):3970-4.
  • [20] Soliman, M., Al-Haik, M., Taha, M.R., 2012b. On and Off-Axis Tension Behavior of Fiber Reinforced Polymer Composites Incorporating Multi-walled Carbon Nanotubes, J Compos Mater., 46(14), 1661-75.
  • [21] Dong, L., Hou, F., Li, Y., Wang, L., Gao, H., Tang, Y., 2014. Composites Preparation of Continuous Carbon Nanotube Networks in Carbon Fiber/Epoxy Composite. Composite: Part A, 56, 248-255.
  • [22] Spinteks, 2014. Erişim Tarihi: 14.07.2014. http://www.Spinteks.Com/
  • [23] De Greef, N., Gorbatikh, L., Godara, A., Mezzo, L., Lomov, S.V., Verpoest, I. 2011. The Effect of Carbon Nanotubes on the Damage Development in Carbon Fiber/Epoxy Composites. Carbon, 49, 4650-64.
  • [24] ASTM D 3171, 2004. Standard Test Method for Constituent Content of Composite Materials, Space Simulation; Aerospace and Aircraft; Composite Materials, Annual Book of ASTM, Philadelphia.
  • [25] Karcı, A., 2009. Uçak Yapısal Parçalarında Kullanılan Karbon/Epoksi Kompozit Malzemelerin Yorulma Davranışı. Fen Bilimleri Enstitüsü, Anadolu Üniversitesi, Doktora Tezi, 130, Eskişehir.
  • [26] ASTM D 792, 1985. Standard Test Method for Specific Gravity and Density of Plastics by Displacement, Space Simulation; Aerospace and Aircraft; Composite Materials, ASTM Standards Volume, Philadelphia.
  • [27] ASTM D 3039, 2005. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Space Simulation; Aerospace and Aircraft; Composite Materials, Annual Book of ASTM, Philadelphia.
  • [28] ASTM D 790-00, 2001. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Philadelphia.
  • [29] ISO 14129:1997, 2012. Fibre-Reinforced Plastic Composites-Determination of the In-Plane Shear Stress/Shear Strain Response, Including the In-Plane Shear Modulus and Strength, by the Plus or Minus 45 Degree Tension Test Method.
  • [30] Korkmaz, N., 2014. Karbon Elyaf Takviyeli Dokuma Kumaş İçeren Kompozit Malzeme Üretimi ve Mekanik Özelliklerinin Belirlenmesi Üzerine Bir Çalışma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 158s, Isparta.
  • [31] http://snebulos.mit.edu/projects/reference/MIL-STD/MIL-HDBK-17-1F.pdf, Erişim Tarihi: 30.08. 2014.
  • [32] Godora, A, Mezzo, L., Luizi. F., Warrier, A., Lomov, S.V, Van Vuure A.W., 2009. Influence of Carbon Nanotubes Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fibre/Epoxy Composites. Carbon, 47, 2914-23.
  • [33] Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Paipetis A., 2009. Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-wall Carbon Nanotubes. J Compos Mater , 43(9):977-85.
  • [34] Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., Paipetis, A., 2010. Impact and After-Impact Properties of Carbon Fibre Reinforced Composites Enhanced with Multi-wall Carbon Nanotubes. Compos Sci Technol, 70, 553-63.
  • [35] Ivanov, E., Kotsilkova, R., Krusteva, E., Logakis, E., Kyritsis, A., Pissis, P., Silvestre, C., Duraccio, D., Pezzuto, M., 2011. Effects of Processing Conditions on Rheological, Thermal, and Electrical Properties of Multiwall Carbon Nanotube/Epoxy Resin Composites. Polymer Physics, 49, 431-442.
  • [36] Qiu, S.L., Wang, C.S., Wang,Y.T., Liu, C.G., Chen, H.F., Xie, X.Y., Huang, Y.A., Cheng, R.S., 2011. Effects of Graphene Oxides on the Cure Behaviors of a Tetrafunctional Epoxy Resin. Express Polymer Letters, 5(9), 2011, 809-818.
  • [37] Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H., Schulte, K., 2006. Evaluation and Identification of Electrical and Thermal Conduction Mechanisms in Carbon Nanotube/Epoxy Composites, Polymer, 47(6): 2036-2045.
  • [38] Asharif B., Guan J., Mirjalili V., Zhang Y., Chun L., Hubert P., 2011. Enhancement of Mechanical Performance of Epoxy/Carbon Fiber Laminate Composites Using Single-Walled Carbon Nanotubes. Compos Sci Technol, 71, 1569-78.
  • [39] Tehrani, M., Boroujeni, A.Y., Hartman,T.B., Haugh, T.P., Case, S.W., Al-Haik, M.S., 2013. Mechanical Characterization and Impact Damage Assessment of a Woven Carbon Fiber Reinforced Carbon Nanotube-Epoxy Composite. Composites Science and Technology, 75, 42-48.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Nazife Korkmaz

Enes Çakmak This is me

Mehmet Dayık This is me

Publication Date June 4, 2016
Published in Issue Year 2016 Volume: 20 Issue: 2

Cite

APA Korkmaz, N., Çakmak, E., & Dayık, M. (2016). Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2). https://doi.org/10.19113/sdufbed.44928
AMA Korkmaz N, Çakmak E, Dayık M. Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. J. Nat. Appl. Sci. August 2016;20(2). doi:10.19113/sdufbed.44928
Chicago Korkmaz, Nazife, Enes Çakmak, and Mehmet Dayık. “Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik Ve Termal Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 2 (August 2016). https://doi.org/10.19113/sdufbed.44928.
EndNote Korkmaz N, Çakmak E, Dayık M (August 1, 2016) Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2
IEEE N. Korkmaz, E. Çakmak, and M. Dayık, “Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu”, J. Nat. Appl. Sci., vol. 20, no. 2, 2016, doi: 10.19113/sdufbed.44928.
ISNAD Korkmaz, Nazife et al. “Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik Ve Termal Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (August 2016). https://doi.org/10.19113/sdufbed.44928.
JAMA Korkmaz N, Çakmak E, Dayık M. Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. J. Nat. Appl. Sci. 2016;20. doi:10.19113/sdufbed.44928.
MLA Korkmaz, Nazife et al. “Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik Ve Termal Karakterizasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 2, 2016, doi:10.19113/sdufbed.44928.
Vancouver Korkmaz N, Çakmak E, Dayık M. Dokuma Karbon Elyaf Takviyeli Karbon Nano Tüp-Epoksi Kompozit Malzemelerin Mekanik ve Termal Karakterizasyonu. J. Nat. Appl. Sci. 2016;20(2).

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.