Graphene, the rising star of carbon nanomaterials, is a single layer of sp2-bonded carbon atoms patterned in a 2D honeycomb network. Thanks to its unique features, graphene has attracted enormous attention and it has arisen various applications in the fields of optical and electrochemical sensors. In the present work, reduced graphene oxide/alpha cyclodextrin (rGO/α-CD) is proposed as a nanocomposite for individual and simultaneous detection of adenine, guanine and thymine. rGO/α-CD has been characterized by FT-IR, Raman spectroscopy, AFM, HR-TEM and SEM techniques. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques were utilized for detection of adenine, guanine and thymine. The limit of detection (LOD) values for adenine, guanine and thymine were calculated to be 145.5, 38.9 and 52.9 nmol L-1, respectively. The results show that the developed sensor can be utilized for the determination of adenine, guanine and thymine in human serum, indicating its promising application in the analysis of real samples.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | April 15, 2017 |
Published in Issue | Year 2017 Volume: 21 Issue: 1 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.