BibTex RIS Cite

Analysis of the Mosaic Defects in Graded and Non Graded In<sub>x</sub>Ga<sub>1-x</sub>N Solar Cell Structures

Year 2017, Volume: 21 Issue: 1, 235 - 240, 03.02.2017
https://doi.org/10.19113/sdufbed.58096

Abstract

In this study, graded (A) InxGa1-xN (10.5 ≤ x ≤ 18.4) and non graded (B) InxGa1-xN (13.6 ≤ x ≤ 24.9) samples are grown on c-oriented sapphire substrate using the Metal Organic Chemical Vapour Deposition (MOCVD) technique. The structural, optical and electrical features of the grown InGaN/GaN solar cell structures are analyzed using High Resolution X-Ray Diffraction (HRXRD), Photoluminescense (PL), Ultraviolet (UV), current density and potential (JV) measurements. According to the HRXRD results; it is determined that the InGaN layer of the graded structure has a lower FWHM (Full width at half maximum) value. From the PL measurements, it is observed that the GaN half-width peak value of the graded sample is narrower and the InGaN peak width value of the graded sample is larger. From UV measurements, that the graded sample has a greater band range. JV measurements determine that the performance of the graded structure is higher.

References

  • [1] Nakamura, S., Pearton, S., Fasol, G. 2000.The Blue Laser Diode, Springer, Berlin,56s.
  • [2] Arslan, E., Demirel, P., Cakmak, H., Ozturk, M.K., Ozbay, E. 2014. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 1-11.
  • [3] Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J. , Semchinova, O., Graul, J. 2002. Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap. Phys. Status Solidi B, 229,R1-R3.
  • [4] Wu., J., Walukiewicz., W., Yu., K. M., Ager III., J. W., Haller, E.E., Lu, Schaff, H. W. J.,Saito, Y. , Nanishi, Y. 2002. Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967-3969.
  • [5] Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E. 2002. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., 81,1246-1248.
  • [6] Omkar, J., Ian, F. 2007. Design and characterization of GaN/InGaN solar cells. Appl.Phys.Lett., 91, 1-3.
  • [7] Luque, A., Marti, A. 2001. A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics, 9, 73-86.
  • [8] Yamaguchi, M., Takamoto, T., Araki, K. 2006. Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Mater Solar Cells, 90(18,19), 3068–3077.
  • [9] King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., Karam, N. H. 2007. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. App. Phys. Lett., 90, 1-3.
  • [10] De Vos, A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 90s.
  • [11] Nanishi, Y., Saito, Y., Yamaguchi, T. 2003. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys. Jpn. J. Appl. Phys., 142, 2549-2559.
  • [12] Ugo, L. et al. 2012. Increasing the reliability of solid state lighting system via self healing approaches. Microelectronic Reliability, 52(1),71-89.
  • [13] Kendrick Chito, E. 2008. Revisiting Nitride Semiconductors, Epilayers, p-type Doping and Nanowires. University of Canterbury, Electrical and Electronic Engineering, NewZeland, 49s.
  • [14] Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J. 2010. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94, 478-483.
  • [15] Yamaguchi, T., Morioka, C., Mizuo, K., Hori, M., Araki, T., Nanishi, Y., Suzuki, A. 2003. Growth of InN and InGaN on Si substrate for solar cell applications, Compound Semiconductors: Post-Conference Proceedings International Symposium, 25-27 August, USA, 214.
  • [16] Hu, C., Lo, I, Hsu, Y.,Shih, C., Pang, W., Wang, Y., Lin, Y., Yang, C., Tsai, C., Hsu, G. Z. L. 2016. Growth of InGaN/GaN quantum wells with graded InGaN buffer for green to yellow light emitters Japanese Journal of Applied Physics, 55(8),1-6.
  • [17] Sun, Y., Cho, Y., Suh, E.K., Lee, H. J., Choi, R.J., Hahn, Y.B. 2003. High brightness blue and green light emitting quantum wells with graded-In content profile grown by MOCVD,Phys. stat. sol. (c),7,2270-2273.
  • [18] Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberlkand, A., Stommer, R. 1999. Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data. Journal of Physics D-Applied Physics, 32(10A), A56-A60.
  • [19] Butcher, K.S.A., Tansley, T.L. 2005. InN latest development and a review of the band-gap controversy, Superlattices and Microstructures, 38(1), 1-37.
  • [20] Zhu, X.L., Guo, L.W., Yu, N.S., Peng, M.Z., Yan, J.F., Ge, B.H., Jia, H.Q., Chen, H., Zhou, J.M. 2006. Characteristics of High In-content InGaN Alloys Grown by MOCVD, Chinese Physics Letters, 23(12), 3369-3371.
  • [21] Fu, S.P. 2004. Effective mass of InN epilayers. Applied Physics Letters, 85(9), 1523-1525.
  • [22] Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J. C., . Weber, E. R, Haller, E. E., Lu, H., Schaff, W. J., Barcz, A., Jakiela R. 2004. Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 84(15), 2805-2807.
  • [23] Pankove, J. I., Miller, E. I., Berkeyheiser, J. E. 1971. GaN Electroluminescent Diodes. RCA Review, 32(3), 383-392.
  • [24] Valdueza-Felip, S., Mukhtarova, A., Grenet, L., Bougerol, C., Durand, C., Eymery, J., Monroy, E. 2014. Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Appl. Phys.Exp., 7, 1-3.
  • [25] Mahala, P., Behura, S. K., Ray, A., Dhanavantri, C., Jani, O. 2012. The Effect of Indium Composition on Open-Circuit Voltage of InGaN Thin-Film Solar Cell: An Analytical and Computer Simulation Study. AIP Conf. Proc., 1451, 85-87.
  • [26] Cai, X. M., Zeng, S. W., Li, X., Zhang, J. Y., Lin, S., Lin, A. K, Chen, M., Liu, W. J., Wu, S. X., Zhang, B.P. 2011. Dependence of the Property of InGaN p-i-n Solar Cells on the Light Concentration and Temperature. IEEE Transactions on electron devices, 58,3905-3911.
Year 2017, Volume: 21 Issue: 1, 235 - 240, 03.02.2017
https://doi.org/10.19113/sdufbed.58096

Abstract

References

  • [1] Nakamura, S., Pearton, S., Fasol, G. 2000.The Blue Laser Diode, Springer, Berlin,56s.
  • [2] Arslan, E., Demirel, P., Cakmak, H., Ozturk, M.K., Ozbay, E. 2014. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 1-11.
  • [3] Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J. , Semchinova, O., Graul, J. 2002. Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap. Phys. Status Solidi B, 229,R1-R3.
  • [4] Wu., J., Walukiewicz., W., Yu., K. M., Ager III., J. W., Haller, E.E., Lu, Schaff, H. W. J.,Saito, Y. , Nanishi, Y. 2002. Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967-3969.
  • [5] Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E. 2002. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., 81,1246-1248.
  • [6] Omkar, J., Ian, F. 2007. Design and characterization of GaN/InGaN solar cells. Appl.Phys.Lett., 91, 1-3.
  • [7] Luque, A., Marti, A. 2001. A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics, 9, 73-86.
  • [8] Yamaguchi, M., Takamoto, T., Araki, K. 2006. Super high-efficiency multi-junction and concentrator solar cells. Solar Energy Mater Solar Cells, 90(18,19), 3068–3077.
  • [9] King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., Karam, N. H. 2007. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. App. Phys. Lett., 90, 1-3.
  • [10] De Vos, A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 90s.
  • [11] Nanishi, Y., Saito, Y., Yamaguchi, T. 2003. RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys. Jpn. J. Appl. Phys., 142, 2549-2559.
  • [12] Ugo, L. et al. 2012. Increasing the reliability of solid state lighting system via self healing approaches. Microelectronic Reliability, 52(1),71-89.
  • [13] Kendrick Chito, E. 2008. Revisiting Nitride Semiconductors, Epilayers, p-type Doping and Nanowires. University of Canterbury, Electrical and Electronic Engineering, NewZeland, 49s.
  • [14] Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J. 2010. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94, 478-483.
  • [15] Yamaguchi, T., Morioka, C., Mizuo, K., Hori, M., Araki, T., Nanishi, Y., Suzuki, A. 2003. Growth of InN and InGaN on Si substrate for solar cell applications, Compound Semiconductors: Post-Conference Proceedings International Symposium, 25-27 August, USA, 214.
  • [16] Hu, C., Lo, I, Hsu, Y.,Shih, C., Pang, W., Wang, Y., Lin, Y., Yang, C., Tsai, C., Hsu, G. Z. L. 2016. Growth of InGaN/GaN quantum wells with graded InGaN buffer for green to yellow light emitters Japanese Journal of Applied Physics, 55(8),1-6.
  • [17] Sun, Y., Cho, Y., Suh, E.K., Lee, H. J., Choi, R.J., Hahn, Y.B. 2003. High brightness blue and green light emitting quantum wells with graded-In content profile grown by MOCVD,Phys. stat. sol. (c),7,2270-2273.
  • [18] Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberlkand, A., Stommer, R. 1999. Determination of the chemical composition of distorted InGaN GaN heterostructures from x-ray diffraction data. Journal of Physics D-Applied Physics, 32(10A), A56-A60.
  • [19] Butcher, K.S.A., Tansley, T.L. 2005. InN latest development and a review of the band-gap controversy, Superlattices and Microstructures, 38(1), 1-37.
  • [20] Zhu, X.L., Guo, L.W., Yu, N.S., Peng, M.Z., Yan, J.F., Ge, B.H., Jia, H.Q., Chen, H., Zhou, J.M. 2006. Characteristics of High In-content InGaN Alloys Grown by MOCVD, Chinese Physics Letters, 23(12), 3369-3371.
  • [21] Fu, S.P. 2004. Effective mass of InN epilayers. Applied Physics Letters, 85(9), 1523-1525.
  • [22] Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J. C., . Weber, E. R, Haller, E. E., Lu, H., Schaff, W. J., Barcz, A., Jakiela R. 2004. Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 84(15), 2805-2807.
  • [23] Pankove, J. I., Miller, E. I., Berkeyheiser, J. E. 1971. GaN Electroluminescent Diodes. RCA Review, 32(3), 383-392.
  • [24] Valdueza-Felip, S., Mukhtarova, A., Grenet, L., Bougerol, C., Durand, C., Eymery, J., Monroy, E. 2014. Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration. Appl. Phys.Exp., 7, 1-3.
  • [25] Mahala, P., Behura, S. K., Ray, A., Dhanavantri, C., Jani, O. 2012. The Effect of Indium Composition on Open-Circuit Voltage of InGaN Thin-Film Solar Cell: An Analytical and Computer Simulation Study. AIP Conf. Proc., 1451, 85-87.
  • [26] Cai, X. M., Zeng, S. W., Li, X., Zhang, J. Y., Lin, S., Lin, A. K, Chen, M., Liu, W. J., Wu, S. X., Zhang, B.P. 2011. Dependence of the Property of InGaN p-i-n Solar Cells on the Light Concentration and Temperature. IEEE Transactions on electron devices, 58,3905-3911.
There are 26 citations in total.

Details

Journal Section Articles
Authors

İlknur Kars Durukan

Mustafa Kemal Öztürk

Süleyman Özçelik

Ekmel Özbay This is me

Publication Date February 3, 2017
Published in Issue Year 2017 Volume: 21 Issue: 1

Cite

APA Kars Durukan, İ., Öztürk, M. K., Özçelik, S., Özbay, E. (2017). Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 235-240. https://doi.org/10.19113/sdufbed.58096
AMA Kars Durukan İ, Öztürk MK, Özçelik S, Özbay E. Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures. J. Nat. Appl. Sci. April 2017;21(1):235-240. doi:10.19113/sdufbed.58096
Chicago Kars Durukan, İlknur, Mustafa Kemal Öztürk, Süleyman Özçelik, and Ekmel Özbay. “Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 1 (April 2017): 235-40. https://doi.org/10.19113/sdufbed.58096.
EndNote Kars Durukan İ, Öztürk MK, Özçelik S, Özbay E (April 1, 2017) Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 1 235–240.
IEEE İ. Kars Durukan, M. K. Öztürk, S. Özçelik, and E. Özbay, “Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures”, J. Nat. Appl. Sci., vol. 21, no. 1, pp. 235–240, 2017, doi: 10.19113/sdufbed.58096.
ISNAD Kars Durukan, İlknur et al. “Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/1 (April 2017), 235-240. https://doi.org/10.19113/sdufbed.58096.
JAMA Kars Durukan İ, Öztürk MK, Özçelik S, Özbay E. Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures. J. Nat. Appl. Sci. 2017;21:235–240.
MLA Kars Durukan, İlknur et al. “Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, 2017, pp. 235-40, doi:10.19113/sdufbed.58096.
Vancouver Kars Durukan İ, Öztürk MK, Özçelik S, Özbay E. Analysis of the Mosaic Defects in Graded and Non Graded InxGa1-xN Solar Cell Structures. J. Nat. Appl. Sci. 2017;21(1):235-40.

Cited By

HR-XRD and AFM analysis of AlN/SiC structures in detail
Gazi University Journal of Science Part A: Engineering and Innovation
https://doi.org/10.54287/gujsa.1435807

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.