BibTex RIS Cite

Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix

Year 2017, Volume: 21 Issue: 3, 733 - 737, 01.08.2017
https://doi.org/10.19113/sdufbed.95256

Abstract

In this study, spin coating method was used for fabricating the P3HT:PCBM bulk heterojunction organic photovoltaic (OPV) devices comprising of Ru dye at different concentrations. The effects of Ru dye incorporated into P3HT:PCBM matrix on photovoltaic and diode parameters of the devices were investigated. It was observed that incorporating Ru dye with the lowest concentration into ternary system, improved the device performance, whereas device performance decreased with the increasing concentration of Ru dye in the blend of ternary system. The power conversion efficiency of OPV device was enhanced about 10% with incorporating Ru dye.

References

  • [1] Panwar N.L., Kaushik S.C., Kothari S. 2011. Role of renewable energy sources in environmental protection: A review, Renew. Sustain. Energy Rev. 15, 1513–1524.
  • [2] Sangster A.J. 2014. Solar Photovoltaics, Green Energy Technol. 194, 145–172.
  • [3] Sharma S., Jain K.K., Sharma A. 2015. Solar Cells: In Research and Applications—A Review, Mater. Sci. Appl. 06, 1145–1155.
  • [4] Gunes S., Neugebauer H., Sariciftci N.S. 2007. Conjugated Polymer-Based Organic Solar Cells, Chem. Rev. 107, 1324–1338.
  • [5] Scharber M.C., Sariciftci N.S. 2013. Efficiency of bulk-heterojunction organic solar cells, Prog. Polym. Sci. 38, 1929–1940.
  • [6] Heeger A.J. 2014. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation, Adv. Mater. 26, 10–28.
  • [7] Lu L., Zheng T., Wu Q., Schneider A.M., Zhao D., Yu L. 2015. Recent Advances in Bulk Heterojunction Polymer Solar Cells, Chem. Rev. 115, 12666–12731.
  • [8] Dang M.T., Hirsch L., Wantz G. 2011. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Adv. Mater. 23, 3597–3602.
  • [9] Grätzel M. 2005. Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841–6851.
  • [10] Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. 2010. Dye-sensitized solar cells., Chem. Rev. 110, 6595–6663.
  • [11] Ng T.W., Chan C.Y., Yang Q.D., Wei H.X., Lo M.F., Roy V.A.L. Zhang W.J., Lee C.S. 2013. Charge interaction and interfacial electronic structures in a solid-state dye-sensitized solar cell, Org. Electron. Physics, Mater. Appl. 14, 2743–2747.
  • [12] Weickert J., Auras F., Bein T., Schmidt-Mende L. 2011. Characterization of interfacial modifiers for hybrid solar cells, J. Phys. Chem. C. 115 15081–15088.
  • [13] Goh C., Scully S.R., McGehee M.D. 2007. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells, J. Appl. Phys. 101, 1–12.
  • [14] Khatri I., Bao J., Kishi N., Soga T. 2012. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells, ISRN Electron. 180787.
  • [15] Chen C.C., Chen L.C. 2012. Study of ruthenium complex sensitizer and gold nanoparticles doped flexible organic solar cells, Adv. Mater. Sci. Eng. 206380.
  • [16] Sze S. M. 1979. Physics of Semiconductor Devices, 3rd ed. John Wiley-Interscience, New York.
  • [17] Bisquert J. Garcia-Belmonte G. 2011. On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells, J. Phys. Chem. Lett. 2, 1950–1964.
Year 2017, Volume: 21 Issue: 3, 733 - 737, 01.08.2017
https://doi.org/10.19113/sdufbed.95256

Abstract

References

  • [1] Panwar N.L., Kaushik S.C., Kothari S. 2011. Role of renewable energy sources in environmental protection: A review, Renew. Sustain. Energy Rev. 15, 1513–1524.
  • [2] Sangster A.J. 2014. Solar Photovoltaics, Green Energy Technol. 194, 145–172.
  • [3] Sharma S., Jain K.K., Sharma A. 2015. Solar Cells: In Research and Applications—A Review, Mater. Sci. Appl. 06, 1145–1155.
  • [4] Gunes S., Neugebauer H., Sariciftci N.S. 2007. Conjugated Polymer-Based Organic Solar Cells, Chem. Rev. 107, 1324–1338.
  • [5] Scharber M.C., Sariciftci N.S. 2013. Efficiency of bulk-heterojunction organic solar cells, Prog. Polym. Sci. 38, 1929–1940.
  • [6] Heeger A.J. 2014. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation, Adv. Mater. 26, 10–28.
  • [7] Lu L., Zheng T., Wu Q., Schneider A.M., Zhao D., Yu L. 2015. Recent Advances in Bulk Heterojunction Polymer Solar Cells, Chem. Rev. 115, 12666–12731.
  • [8] Dang M.T., Hirsch L., Wantz G. 2011. P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Adv. Mater. 23, 3597–3602.
  • [9] Grätzel M. 2005. Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44, 6841–6851.
  • [10] Hagfeldt A., Boschloo G., Sun L., Kloo L., Pettersson H. 2010. Dye-sensitized solar cells., Chem. Rev. 110, 6595–6663.
  • [11] Ng T.W., Chan C.Y., Yang Q.D., Wei H.X., Lo M.F., Roy V.A.L. Zhang W.J., Lee C.S. 2013. Charge interaction and interfacial electronic structures in a solid-state dye-sensitized solar cell, Org. Electron. Physics, Mater. Appl. 14, 2743–2747.
  • [12] Weickert J., Auras F., Bein T., Schmidt-Mende L. 2011. Characterization of interfacial modifiers for hybrid solar cells, J. Phys. Chem. C. 115 15081–15088.
  • [13] Goh C., Scully S.R., McGehee M.D. 2007. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells, J. Appl. Phys. 101, 1–12.
  • [14] Khatri I., Bao J., Kishi N., Soga T. 2012. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells, ISRN Electron. 180787.
  • [15] Chen C.C., Chen L.C. 2012. Study of ruthenium complex sensitizer and gold nanoparticles doped flexible organic solar cells, Adv. Mater. Sci. Eng. 206380.
  • [16] Sze S. M. 1979. Physics of Semiconductor Devices, 3rd ed. John Wiley-Interscience, New York.
  • [17] Bisquert J. Garcia-Belmonte G. 2011. On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells, J. Phys. Chem. Lett. 2, 1950–1964.
There are 17 citations in total.

Details

Journal Section Articles
Authors

Fatih Ongül

Publication Date August 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Ongül, F. (2017). Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 733-737. https://doi.org/10.19113/sdufbed.95256
AMA Ongül F. Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix. SDÜ Fen Bil Enst Der. December 2017;21(3):733-737. doi:10.19113/sdufbed.95256
Chicago Ongül, Fatih. “Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 733-37. https://doi.org/10.19113/sdufbed.95256.
EndNote Ongül F (December 1, 2017) Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 733–737.
IEEE F. Ongül, “Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix”, SDÜ Fen Bil Enst Der, vol. 21, no. 3, pp. 733–737, 2017, doi: 10.19113/sdufbed.95256.
ISNAD Ongül, Fatih. “Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 733-737. https://doi.org/10.19113/sdufbed.95256.
JAMA Ongül F. Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix. SDÜ Fen Bil Enst Der. 2017;21:733–737.
MLA Ongül, Fatih. “Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 733-7, doi:10.19113/sdufbed.95256.
Vancouver Ongül F. Photovoltaic Performance of BHJ Organic Solar Cells Based on Incorporation of Ru Dye into P3HT:PCBM Matrix. SDÜ Fen Bil Enst Der. 2017;21(3):733-7.

e-ISSN: 1308-6529