BibTex RIS Cite

Characterization of Alginate/Perlite Particles

Year 2017, Volume: 21 Issue: 3, 756 - 766, 12.09.2017

Abstract

In this study alginate/perlite composite particles obtained by ionic gelation method were characterized and their usability on the removal of Pb (II) and Ni (II) ions from aqueous solutions was tested. The effects of pH, contact time, initial metal ion level and perlite concentration on the adsorption capacity of particles were investigated in a batch system. Desorption of tested heavy metal ions from particles and reusability of particles were also investigated. Optical microscopy analysis showed that diameters of wet and dried particles were between 2.5-2.8 mm and 1.8-1.9 mm, respectively. Incorporation of perlite decreased the swelling degree of the particles. SEM and SEM-EDX analysis indicated that perlite appeared as thin plates and mainly composed of silica. SEM-EDX also indicated that alginate/perlite particles were composed of C, O, Na, Al, Si, and K. XRD analysis indicated that perlite had amorphous structure and distributed in the alginate matrix. According to TGA analysis, perlite improved the thermal properties of particles. The optimum pH value varied between 6 and 7 for the removal of Pb (II) and Ni (II). The adsorption efficiency of particles reached maximum level while the perlite/alginate (wt. /wt.) ratio was 2.

References

  • [1] Li, X., Li, Y., Ye, Z. 2011. Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution, Chemical Engineering Journal, 178, 60 -68.
  • [2] Zhou, L., Wang, Y., Liu, Z., Huang, Q. 2009. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan particles, Journal of Hazardous Materials, 161(2), 995-1002.
  • [3] Tirtom, V., Dinçer, A., Becerik, S., Aydemir, T., Çelik, A. 2012. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution, Chemical Engineering Journal, 197, 379-386.
  • [4] Idris, A., Ismail, N., Hassan, N., Misran, E., Ngomsik, A. 2012. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb (II) removal in aqueous solution, Journal of Industrial and Engineering Chemistry, 18(5), 1582-1589.
  • [5] Ngah, W.W., Endud, C., Mayanar, R. 2002. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive and Functional Polymers, 50(2), 181-190.
  • [6] Kacar, Y., Arpa, C., Tan, S., Denizli, A., Genc, Ö., Arica, M.Y. 2002. Biosoption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilizd live and heat inactivated Phanerochaetechrysosporium, Process Biochemistry, 37, 601-610.
  • [7] Bayramoglu, G., Tuzun, I., Celik, G., Yilmaz, M., Arica, M.Y. 2006. Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonasreinhardtii immobilized in alginate beads, 81, 35-43.
  • [8] Sag, Y., Nourbakhsh, Z., Aksu, Z., Kutal, T. 1995.Comparison of Ca-alginate and Immobilized Z. ramigera as sorbents for Copper (II) removal, Process Biochemistry, 30(2), 175-181.
  • [9] Li, N., Bai, R. 2006. Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal, Water Science &Technology, 54(10), 103-113.
  • [10] Yu, K., Ho, J., McCandlish, E., Buckley, B., Patel, R., Li, Z., Shapley, N.C, 2013. Copper ion adsorption by chitosan nanoparticles and alginate micro particles for water purification applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 31-41.
  • [11] Gotoh, T., Matsushima K., Kikuchi, K.-I. 2004. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads, Chemosphere, 55, 57-64.
  • [12] Ely, A., Baudu, M., Basly, J.-P., Kankou, M.O.S.A.O. 2009. Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules, Journal of hazardous materials, 171(1), 405-409.
  • [13] Donia, A.M., Atia, A.A., Elwakeel, K. 2008. Selective separation of mercury (II) using magnetic chitosan rein modified with Schiff’s base derived from thiourea and glutaraldehyde, 151, 372-379.
  • [14] Lazaridis, N., Charalambous, C. 2005. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads, Water research, 39(18), 4385-4396.
  • [15] Wang, P., Yan, T., Wang, L. 2013. Removal of Congo red from aqueous solution using magnetic chitosan composite microparticles, Bioresources, 8(4), 6024-6043.
  • [16] Hritcu, D., Dodi, G., Silion, M., Popa, N., Popa, M. 2011. Composite magnetic chitosan particles: In situ preparation and characterization, Polymer bulletin, 67(1), 177-186.
  • [17] Shawky, H. 2011. Improvement of water quality using alginate/montmorillonite composite beads, Journal of Applied Polymer Science, 119(4), 2371-2378.
  • [18] Zhang, J., Xu, S., Du, Z., Ren, K. 2011. Preparation and characterization of montmorillonnite/tamarind gum/sodium alginate composite gel beads, Journal of Composite Materials, 45(3), 295-305.
  • [19] Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S. 2006. Adsorption of divalent cadmium (Cd (II) from aqueous solution onto chitosan-coated perlite beads, Ind.Eng.Chem.Res 45, 5066-5077.
  • [20] Hasan, S., Krishnaiah, A., Ghosh, T., Viswanath, D., Boddu, V., Smith, E. 2003. Adsorption of Chromium (VI) on Chitosan Coated Perlite, Separation science and technology, 38(15), 3775-3793.
  • [21] Sarı, A., Şahinoğlu, G., Tüzen, M. 2012. Antimony (III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies, Industrial & Engineering Chemistry Research, 51(19), 6877-6886.
  • [22] Lagoa, R., Rodrigues, J. 2009. Kinetic analysis of metal uptake by dry and gel alginate particles, Biochemical Engineering Journal, 46(3), 320-326.
  • [23] Mahdavinia, G.R., Rahmani, Z., Karami, S., Pourjavadi, A. 2014. "Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery", Journal of Biomaterials Science, Polymer Edition, 25(17), 1891-1906.
  • [24] Yan, H., Feng, Y., Hu, W., Cheng, C., Liu, R., Wang, C., Li, J., Lin, Q. 2013. Preparation and evaluation of alginate-chitosan-bentonite based beads for the delivery of pesticides in controlled-release formulation, Asian Journal of Chemistry, 25(17), 9936.
  • [25] Celik, A.G., Kilic, A.M., Cakal, G.O. 2013. Expanded perlite aggregate characterization for use as a lightweight construction raw material, Physicochemical Problems of Mineral Processing, 49(2), 689-700.
  • [26] Rahim, S.N.A., Hamzah, F., Hamid, K.H.K., Rodhi, M.N.M., Musa, M., Edama, N.A. Enzymes encapsulation within calsium alginate-clay beads:Characterization and application for cassava slurry saccharification, Procedia Engineering, 68 (2013), 411-417.
  • [27] Erdogan, S. 2014. Properties of ground perlite geopolymer mortars, Journal of Materials in Civil Engineering, 27(7), 1-10.
  • [28] Cheong, M., Zhitomirsky, I. 2008. Electrodeposition of alginic acid and composite films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 328(1), 73-78
  • [29] Ture, H., Blomfeldt, T.O.J., Gallstedt, M., Hedenqvist, M.S. 2012. Properties of wheat-gluten/montmorillonite nanocomposite films obtained by a solvent-free extrusion process, J Polym Environ, 20, 1038-1045.
  • [30] Oladipo, A.A., Gazi, M. 2015. Nickel removal from aqueous solutions by alginate-based composite beads: Central composite design and artificial neural network modeling, Journal of Water Process Engineering, 8, 81-91.
  • [31] Pandey, A., Bera, D., Shukla, A., Ray, L. 2007. Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer, Chemical Speciation and Bioavailability, 19(1), 17-24.
  • [32] Bohli, T., Villaescusa I., Ouederni, A.2013. Comparative study of bivalent cationic metals adsorption Pb (II), Cd (II), Ni (II) and Cu (II) on olive stones chemically activated carbon, Chemical Engineering & , Process Technologhy, 4 (4), 1-7.
  • [33] Ngomsik, A., Bee, A., Siaugue, J., Talbot, D., Cabuil, V., Cote, G. 2009. Co (II) removal by magnetic alginate beads containing Cyanex 272, Journal of hazardous materials, 166(2), 1043-1049.
  • [34] Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M., Taheri, H. 2010. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite, Journal of hazardous materials, 177(1), 950-955.
  • [35] Mathialagan, T., Viraraghavan, T. 2002. Adsorption of cadmium from aqueous solutions by perlite, Journal of Hazardous Materials, 94(3), 291-303
  • [36] Chen, D., Li, W., Wu, Y., Zhu, Q., Lu, Z., Du, G. 2013. Preparation and characterization of chitosan/montmorillonite magnetic particles and its application for the removal of Cr (VI), Chemical Engineering Journal, 221, 8-15.
  • [37] Pandey, A., Bera, D., Shukla, A., Ray, L. 2007. Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer, Chemical Speciation and Bioavailability, 19(1), 17-24.
Year 2017, Volume: 21 Issue: 3, 756 - 766, 12.09.2017

Abstract

References

  • [1] Li, X., Li, Y., Ye, Z. 2011. Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution, Chemical Engineering Journal, 178, 60 -68.
  • [2] Zhou, L., Wang, Y., Liu, Z., Huang, Q. 2009. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan particles, Journal of Hazardous Materials, 161(2), 995-1002.
  • [3] Tirtom, V., Dinçer, A., Becerik, S., Aydemir, T., Çelik, A. 2012. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution, Chemical Engineering Journal, 197, 379-386.
  • [4] Idris, A., Ismail, N., Hassan, N., Misran, E., Ngomsik, A. 2012. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb (II) removal in aqueous solution, Journal of Industrial and Engineering Chemistry, 18(5), 1582-1589.
  • [5] Ngah, W.W., Endud, C., Mayanar, R. 2002. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive and Functional Polymers, 50(2), 181-190.
  • [6] Kacar, Y., Arpa, C., Tan, S., Denizli, A., Genc, Ö., Arica, M.Y. 2002. Biosoption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilizd live and heat inactivated Phanerochaetechrysosporium, Process Biochemistry, 37, 601-610.
  • [7] Bayramoglu, G., Tuzun, I., Celik, G., Yilmaz, M., Arica, M.Y. 2006. Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonasreinhardtii immobilized in alginate beads, 81, 35-43.
  • [8] Sag, Y., Nourbakhsh, Z., Aksu, Z., Kutal, T. 1995.Comparison of Ca-alginate and Immobilized Z. ramigera as sorbents for Copper (II) removal, Process Biochemistry, 30(2), 175-181.
  • [9] Li, N., Bai, R. 2006. Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal, Water Science &Technology, 54(10), 103-113.
  • [10] Yu, K., Ho, J., McCandlish, E., Buckley, B., Patel, R., Li, Z., Shapley, N.C, 2013. Copper ion adsorption by chitosan nanoparticles and alginate micro particles for water purification applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 425, 31-41.
  • [11] Gotoh, T., Matsushima K., Kikuchi, K.-I. 2004. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads, Chemosphere, 55, 57-64.
  • [12] Ely, A., Baudu, M., Basly, J.-P., Kankou, M.O.S.A.O. 2009. Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules, Journal of hazardous materials, 171(1), 405-409.
  • [13] Donia, A.M., Atia, A.A., Elwakeel, K. 2008. Selective separation of mercury (II) using magnetic chitosan rein modified with Schiff’s base derived from thiourea and glutaraldehyde, 151, 372-379.
  • [14] Lazaridis, N., Charalambous, C. 2005. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads, Water research, 39(18), 4385-4396.
  • [15] Wang, P., Yan, T., Wang, L. 2013. Removal of Congo red from aqueous solution using magnetic chitosan composite microparticles, Bioresources, 8(4), 6024-6043.
  • [16] Hritcu, D., Dodi, G., Silion, M., Popa, N., Popa, M. 2011. Composite magnetic chitosan particles: In situ preparation and characterization, Polymer bulletin, 67(1), 177-186.
  • [17] Shawky, H. 2011. Improvement of water quality using alginate/montmorillonite composite beads, Journal of Applied Polymer Science, 119(4), 2371-2378.
  • [18] Zhang, J., Xu, S., Du, Z., Ren, K. 2011. Preparation and characterization of montmorillonnite/tamarind gum/sodium alginate composite gel beads, Journal of Composite Materials, 45(3), 295-305.
  • [19] Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S. 2006. Adsorption of divalent cadmium (Cd (II) from aqueous solution onto chitosan-coated perlite beads, Ind.Eng.Chem.Res 45, 5066-5077.
  • [20] Hasan, S., Krishnaiah, A., Ghosh, T., Viswanath, D., Boddu, V., Smith, E. 2003. Adsorption of Chromium (VI) on Chitosan Coated Perlite, Separation science and technology, 38(15), 3775-3793.
  • [21] Sarı, A., Şahinoğlu, G., Tüzen, M. 2012. Antimony (III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies, Industrial & Engineering Chemistry Research, 51(19), 6877-6886.
  • [22] Lagoa, R., Rodrigues, J. 2009. Kinetic analysis of metal uptake by dry and gel alginate particles, Biochemical Engineering Journal, 46(3), 320-326.
  • [23] Mahdavinia, G.R., Rahmani, Z., Karami, S., Pourjavadi, A. 2014. "Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery", Journal of Biomaterials Science, Polymer Edition, 25(17), 1891-1906.
  • [24] Yan, H., Feng, Y., Hu, W., Cheng, C., Liu, R., Wang, C., Li, J., Lin, Q. 2013. Preparation and evaluation of alginate-chitosan-bentonite based beads for the delivery of pesticides in controlled-release formulation, Asian Journal of Chemistry, 25(17), 9936.
  • [25] Celik, A.G., Kilic, A.M., Cakal, G.O. 2013. Expanded perlite aggregate characterization for use as a lightweight construction raw material, Physicochemical Problems of Mineral Processing, 49(2), 689-700.
  • [26] Rahim, S.N.A., Hamzah, F., Hamid, K.H.K., Rodhi, M.N.M., Musa, M., Edama, N.A. Enzymes encapsulation within calsium alginate-clay beads:Characterization and application for cassava slurry saccharification, Procedia Engineering, 68 (2013), 411-417.
  • [27] Erdogan, S. 2014. Properties of ground perlite geopolymer mortars, Journal of Materials in Civil Engineering, 27(7), 1-10.
  • [28] Cheong, M., Zhitomirsky, I. 2008. Electrodeposition of alginic acid and composite films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 328(1), 73-78
  • [29] Ture, H., Blomfeldt, T.O.J., Gallstedt, M., Hedenqvist, M.S. 2012. Properties of wheat-gluten/montmorillonite nanocomposite films obtained by a solvent-free extrusion process, J Polym Environ, 20, 1038-1045.
  • [30] Oladipo, A.A., Gazi, M. 2015. Nickel removal from aqueous solutions by alginate-based composite beads: Central composite design and artificial neural network modeling, Journal of Water Process Engineering, 8, 81-91.
  • [31] Pandey, A., Bera, D., Shukla, A., Ray, L. 2007. Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer, Chemical Speciation and Bioavailability, 19(1), 17-24.
  • [32] Bohli, T., Villaescusa I., Ouederni, A.2013. Comparative study of bivalent cationic metals adsorption Pb (II), Cd (II), Ni (II) and Cu (II) on olive stones chemically activated carbon, Chemical Engineering & , Process Technologhy, 4 (4), 1-7.
  • [33] Ngomsik, A., Bee, A., Siaugue, J., Talbot, D., Cabuil, V., Cote, G. 2009. Co (II) removal by magnetic alginate beads containing Cyanex 272, Journal of hazardous materials, 166(2), 1043-1049.
  • [34] Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M., Taheri, H. 2010. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite, Journal of hazardous materials, 177(1), 950-955.
  • [35] Mathialagan, T., Viraraghavan, T. 2002. Adsorption of cadmium from aqueous solutions by perlite, Journal of Hazardous Materials, 94(3), 291-303
  • [36] Chen, D., Li, W., Wu, Y., Zhu, Q., Lu, Z., Du, G. 2013. Preparation and characterization of chitosan/montmorillonite magnetic particles and its application for the removal of Cr (VI), Chemical Engineering Journal, 221, 8-15.
  • [37] Pandey, A., Bera, D., Shukla, A., Ray, L. 2007. Studies on Cr (VI), Pb (II) and Cu (II) adsorption–desorption using calcium alginate as biopolymer, Chemical Speciation and Bioavailability, 19(1), 17-24.
There are 37 citations in total.

Details

Journal Section Articles
Authors

Hasan Türe

Kader Terzioğlu This is me

Evren Tunca

Publication Date September 12, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Türe, H., Terzioğlu, K., & Tunca, E. (2017). Characterization of Alginate/Perlite Particles. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 756-766. https://doi.org/10.19113/sdufbed.73663
AMA Türe H, Terzioğlu K, Tunca E. Characterization of Alginate/Perlite Particles. J. Nat. Appl. Sci. December 2017;21(3):756-766. doi:10.19113/sdufbed.73663
Chicago Türe, Hasan, Kader Terzioğlu, and Evren Tunca. “Characterization of Alginate/Perlite Particles”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 756-66. https://doi.org/10.19113/sdufbed.73663.
EndNote Türe H, Terzioğlu K, Tunca E (December 1, 2017) Characterization of Alginate/Perlite Particles. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 756–766.
IEEE H. Türe, K. Terzioğlu, and E. Tunca, “Characterization of Alginate/Perlite Particles”, J. Nat. Appl. Sci., vol. 21, no. 3, pp. 756–766, 2017, doi: 10.19113/sdufbed.73663.
ISNAD Türe, Hasan et al. “Characterization of Alginate/Perlite Particles”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 756-766. https://doi.org/10.19113/sdufbed.73663.
JAMA Türe H, Terzioğlu K, Tunca E. Characterization of Alginate/Perlite Particles. J. Nat. Appl. Sci. 2017;21:756–766.
MLA Türe, Hasan et al. “Characterization of Alginate/Perlite Particles”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 756-6, doi:10.19113/sdufbed.73663.
Vancouver Türe H, Terzioğlu K, Tunca E. Characterization of Alginate/Perlite Particles. J. Nat. Appl. Sci. 2017;21(3):756-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.