BibTex RIS Cite

Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct

Year 2017, Volume: 21 Issue: 3, 820 - 830, 21.10.2017

Abstract

Present study investigates the effects of solid to fluid conductivity ratio, Prandtl and Reynolds numbers, and solid wall thickness on conjugate heat transfer for a backward facing step duct with a conductive solid bottom wall. Although Kanna and Das performed a case study in 2006 for the same problem, the benchmark studies conducted later including the present one revealed that their results are arguable. Ramsak states in a study “Professor Kanna has confirmed in personal communication that their results are probably wrong”. The temperature and Nusselt number variations along the solid-fluid interface presented here are in excellent agreement with those obtained by Ramsak. The analyses presented here reveal that even though the decrease in Pr and the increase in solid to fluid conductivity ratio have similar global influence with the thinning wall on the interface temperature, the influence of the former parameters are limited in recirculation zone.

References

  • [1] Mensch, A. and Thole, K., 2015, Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade end wall, Heat and Mass Transfer, 82, 66-77.
  • [2] Sosnowski, P., Petronio A., Armenio, V., 2013, Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer, International Journal of Heat and Mass Transfer, 66, 382-395.
  • [3] Cintolesi, C., Nilsson, H., Petronio, A., Armenio V., 2017, Numerical simulation of conjugate heat transfer and surface radiative heat transfer using theP1 thermal radiation model: Parametric study in benchmark cases, International Journal of Heat and Mass Transfer, 107, 959-971.
  • [4] Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., 1993, Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re = 800 stable? , Int. J. Numerical Methods Fluids 17, 501–541.
  • [5] Keskar, J., Lyn, D.A., 1999, Computations of a laminar backward-facing step flow at Re = 800 with a spectral domain decomposition method, Int. J. Numerical Methods Fluids, 29, 411–427.
  • [6] Gartling, D.K., 1990, A test problem for outflow boundary conditions – flow over a backward-facing step. Int. J. Numerical Methods Fluids, 11, 953–967.
  • [7] Papanastasiou, T.C., Malamataris, N., Ellwood, K., 1992, A new outflow boundary condition, Int. J. Numerical Methods Fluids, 14, 587–608.
  • [8] Rogers, S.E., Kwak, D., 1991, An upwind differencing scheme for the incompressible Navier–Stokes equations. Appl. Numer. Math., 8, 43–64.
  • [9] Kim, J., Moin, P., 1985, Application of a fractional-step method to incompressible Navier–Stokes equations. J Comp Phys., 59, 308–23.
  • [10] Barton, I.E., 1997, The entrance effect of laminar flow over a backward facing step geometry, Int. J. Numerical Methods Fluids, 25, 633–44.
  • [11] Barton IE., 1998, Improved laminar predictions using a stabilized time dependent simple scheme, Int. J. Numer. Methods Fluids, 28, 841–57.
  • [12] Sani, R.L, Gresho, P.M., 1994, Resume and remarks on the open boundary condition mini symposium, Int J Numer Methods Fluids, 18, 983–1008.
  • [13] Sheu, T.W.H., Tsai, S.F., 1999, Consistent Petrov Galerkin finite element simulation of channel flows, Int. J. Numer. Methods Fluids, 31, 1297–310.
  • [14] Biagioli, F., 1998, Calculation of laminar flows with second-order schemes and collocated variable arrangement, Int J Numer Methods Fluids, 26, 887–905.
  • [15] Grigoriev, M.M., Dargush, G.F., 1999, A poly-region boundary element method for incompressible viscous fluid flows, Int J Numer Methods Eng. 1999, 46, 1127–58.
  • [16] Zang, Y., Street, R.L., Koseff, J.R., 1994, Grid A Non-staggered. Fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates, J Comp Phys, 114, 18–33.
  • [17] Erturk, E., 2008, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers and Fluids, 37(6), 633–655.
  • [18] Ramsak, M., and Skerget, L., 2004, A highly efficient multidomain BEM for multimillion subdomains, Eng. Anal. Bound. Elem. 43, 76–85.
  • [19] Cruchaga, M.A., 1998, A study of the backward-facing step problem using a generalized streamline formulation, Commun Numer Methods Eng., 14, 697–708.
  • [20] Li, A. and Armaly, B.F., 2000, Convection Adjacent to a 3-D Backward-Facing Step," Proceedings of the 2000 (34th) National Heat Transfer Conference, Pittsburgh, PA, August 20 -22, ASME Paper No. NHTC2000-12301.
  • [21] Barbosa Saldana J., and, N.K., Sarin V., 2005, Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step, Journal of Heat Transfer, 127, 1027-1036.
  • [22] Nie, J., and Armaly, B, 2003, Reattachment of Three-Dimensional Flow Adjacent to Backward-Facing Step, Journal of Heat Transfer, 125 (3), 422.
  • [23] Kanna, R.P., Das K.M., 2006, Conjugate heat transfer study of backward-facing step flow – A benchmark problem, International Journal of Heat and Mass Transfer, 49, 3929-3941.
  • [24] Ramsak, M. 2015, Conjugate heat transfer of backward-facing step flow: A benchmark problem revisited, International Journal of Heat and Mass Transfer, 84, 791-799.
  • [25] Teruel, F.E., Fogliatto, E., 2013, Numerical simulations of flow, heat transfer and conjugate heat transfer in the backward-facing step geometry, Mecanica, Computacional, vol. 32, Asociation Argentina de Mecanica Computacional 3265–3278
  • [26] Craven, B.A., Campbell, R.A, Multi-Region Conjugate Heat/Mass Tansfers, http://www.personal.psu.edu/dab143/OFW6/Training/craven_slides.pdf (Last reached on 01.10.2017).
  • [27] OpenFOAM UserGuide, http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf (Last reached on 01.10.2017).
  • [28] Topbas, B.S. Celik, B., 2015, Conjugate heat transfer analysis for internally cooled solid structure, 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 2-5 September, Balıkesir, Turkey, 2015.
Year 2017, Volume: 21 Issue: 3, 820 - 830, 21.10.2017

Abstract

References

  • [1] Mensch, A. and Thole, K., 2015, Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade end wall, Heat and Mass Transfer, 82, 66-77.
  • [2] Sosnowski, P., Petronio A., Armenio, V., 2013, Numerical model for thin liquid film with evaporation and condensation on solid surfaces in systems with conjugated heat transfer, International Journal of Heat and Mass Transfer, 66, 382-395.
  • [3] Cintolesi, C., Nilsson, H., Petronio, A., Armenio V., 2017, Numerical simulation of conjugate heat transfer and surface radiative heat transfer using theP1 thermal radiation model: Parametric study in benchmark cases, International Journal of Heat and Mass Transfer, 107, 959-971.
  • [4] Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., 1993, Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re = 800 stable? , Int. J. Numerical Methods Fluids 17, 501–541.
  • [5] Keskar, J., Lyn, D.A., 1999, Computations of a laminar backward-facing step flow at Re = 800 with a spectral domain decomposition method, Int. J. Numerical Methods Fluids, 29, 411–427.
  • [6] Gartling, D.K., 1990, A test problem for outflow boundary conditions – flow over a backward-facing step. Int. J. Numerical Methods Fluids, 11, 953–967.
  • [7] Papanastasiou, T.C., Malamataris, N., Ellwood, K., 1992, A new outflow boundary condition, Int. J. Numerical Methods Fluids, 14, 587–608.
  • [8] Rogers, S.E., Kwak, D., 1991, An upwind differencing scheme for the incompressible Navier–Stokes equations. Appl. Numer. Math., 8, 43–64.
  • [9] Kim, J., Moin, P., 1985, Application of a fractional-step method to incompressible Navier–Stokes equations. J Comp Phys., 59, 308–23.
  • [10] Barton, I.E., 1997, The entrance effect of laminar flow over a backward facing step geometry, Int. J. Numerical Methods Fluids, 25, 633–44.
  • [11] Barton IE., 1998, Improved laminar predictions using a stabilized time dependent simple scheme, Int. J. Numer. Methods Fluids, 28, 841–57.
  • [12] Sani, R.L, Gresho, P.M., 1994, Resume and remarks on the open boundary condition mini symposium, Int J Numer Methods Fluids, 18, 983–1008.
  • [13] Sheu, T.W.H., Tsai, S.F., 1999, Consistent Petrov Galerkin finite element simulation of channel flows, Int. J. Numer. Methods Fluids, 31, 1297–310.
  • [14] Biagioli, F., 1998, Calculation of laminar flows with second-order schemes and collocated variable arrangement, Int J Numer Methods Fluids, 26, 887–905.
  • [15] Grigoriev, M.M., Dargush, G.F., 1999, A poly-region boundary element method for incompressible viscous fluid flows, Int J Numer Methods Eng. 1999, 46, 1127–58.
  • [16] Zang, Y., Street, R.L., Koseff, J.R., 1994, Grid A Non-staggered. Fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates, J Comp Phys, 114, 18–33.
  • [17] Erturk, E., 2008, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Computers and Fluids, 37(6), 633–655.
  • [18] Ramsak, M., and Skerget, L., 2004, A highly efficient multidomain BEM for multimillion subdomains, Eng. Anal. Bound. Elem. 43, 76–85.
  • [19] Cruchaga, M.A., 1998, A study of the backward-facing step problem using a generalized streamline formulation, Commun Numer Methods Eng., 14, 697–708.
  • [20] Li, A. and Armaly, B.F., 2000, Convection Adjacent to a 3-D Backward-Facing Step," Proceedings of the 2000 (34th) National Heat Transfer Conference, Pittsburgh, PA, August 20 -22, ASME Paper No. NHTC2000-12301.
  • [21] Barbosa Saldana J., and, N.K., Sarin V., 2005, Numerical Simulation of Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step, Journal of Heat Transfer, 127, 1027-1036.
  • [22] Nie, J., and Armaly, B, 2003, Reattachment of Three-Dimensional Flow Adjacent to Backward-Facing Step, Journal of Heat Transfer, 125 (3), 422.
  • [23] Kanna, R.P., Das K.M., 2006, Conjugate heat transfer study of backward-facing step flow – A benchmark problem, International Journal of Heat and Mass Transfer, 49, 3929-3941.
  • [24] Ramsak, M. 2015, Conjugate heat transfer of backward-facing step flow: A benchmark problem revisited, International Journal of Heat and Mass Transfer, 84, 791-799.
  • [25] Teruel, F.E., Fogliatto, E., 2013, Numerical simulations of flow, heat transfer and conjugate heat transfer in the backward-facing step geometry, Mecanica, Computacional, vol. 32, Asociation Argentina de Mecanica Computacional 3265–3278
  • [26] Craven, B.A., Campbell, R.A, Multi-Region Conjugate Heat/Mass Tansfers, http://www.personal.psu.edu/dab143/OFW6/Training/craven_slides.pdf (Last reached on 01.10.2017).
  • [27] OpenFOAM UserGuide, http://foam.sourceforge.net/docs/Guides-a4/ProgrammersGuide.pdf (Last reached on 01.10.2017).
  • [28] Topbas, B.S. Celik, B., 2015, Conjugate heat transfer analysis for internally cooled solid structure, 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 2-5 September, Balıkesir, Turkey, 2015.
There are 28 citations in total.

Details

Journal Section Articles
Authors

Bayram Celik

Publication Date October 21, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Celik, B. (2017). Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 820-830. https://doi.org/10.19113/sdufbed.57913
AMA Celik B. Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct. SDÜ Fen Bil Enst Der. December 2017;21(3):820-830. doi:10.19113/sdufbed.57913
Chicago Celik, Bayram. “Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 820-30. https://doi.org/10.19113/sdufbed.57913.
EndNote Celik B (December 1, 2017) Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 820–830.
IEEE B. Celik, “Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct”, SDÜ Fen Bil Enst Der, vol. 21, no. 3, pp. 820–830, 2017, doi: 10.19113/sdufbed.57913.
ISNAD Celik, Bayram. “Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 820-830. https://doi.org/10.19113/sdufbed.57913.
JAMA Celik B. Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct. SDÜ Fen Bil Enst Der. 2017;21:820–830.
MLA Celik, Bayram. “Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 820-3, doi:10.19113/sdufbed.57913.
Vancouver Celik B. Conjugate Heat Transfer Characteristics of Laminar Flows Through a Backward Facing Step Duct. SDÜ Fen Bil Enst Der. 2017;21(3):820-3.

e-ISSN: 1308-6529