BibTex RIS Cite

Türkiye’deki <em>Calopteryx splendens</em> (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi

Year 2017, Volume: 21 Issue: 3, 935 - 941, 10.05.2017
https://doi.org/10.19113/sdufbed.53284

Abstract

Türkiye coğrafik konumu, topografik yapısı, çeşitli iklim tiplerini bulundurması nedeniyle biyolojik çeşitlilik açısından önemli bir bölgededir. Türleşme ve alt populasyonların oluşumlarına rastlanmaktadır. Bu çalışmada Türkiye’de yayılış gösteren Calopteryx splendens (Harris, 1782) türüne ait olan morfolojik olarak tanımlanmış alttürlerin 19 ekolojik faktörün analizi neticesinde farklı lokasyonlarda aynı koşulları sağlayabilen potansiyel dağılım alanlarının belirlenmesi hedeflenmiştir. C. splendens alttürlerin günümüzdeki dağılım haritaları MaxEnt ekolojik niş modelleme yöntemleri kullanarak yapılmıştır. Bu sonuçlara göre, faunistik verilere göre dağılımları bilinen C. splendens alttürlerin yayılış alanlarının ekolojik verilerle ortaya konan dağılım alanlarıyla hemen hemen örtüştüğü tespit edilmiştir.

References

  • [1] Mertens, J., De Coster, W., De Mayer, H., Dumont, H.J. 1992. A method for the quantitative analysis of wing spots applied to two populations of Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 21 (4), 443-451.
  • [2] Kalkman, V.J. 2006. Key to the dragonflies of Turkey, İncluding species known from Greece, Bulgaria, Lebanon, Syria, the Trans-Caucasus and Iran. Brachytron, 10 (1), 3-82.
  • [3] Demirsoy, A. 2002. Genel Zoocoğrafya ve Türkiye Zoocoğrafyası, Beşinci Baskı. Meteksan, Ankara, ss 327-348.
  • [4] Dumont, H.J., Vanfletern, J.R., De Jonckheere, J.F., Weekers, P.H.H. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54 (3), 347-362.
  • [5] Dumont, H. J., Mertens, J., De Coster, W. 1993. The Calopteryx splendens-cline in Southwest France, analysed by quantitative wingspot analysis. Odonatologica, 22 (3), 345–351.
  • [6] Hassall, C. 2014. Continental variation in wing pigmentation in Calopteryxdamselflies is related to the presence of heterospecifics. PeerJ PrePrints 2: e316v1 https://doi.org/10.7287/peerj.preprints.316v1.
  • [7] Svensson, E. I., Waller, J.T. 2013. Ecology and Sexual Selection: Evolution of Wing Pigmentation in Calopterygid Damselflies in Relation to Latitude, Sexual Dimorphism, and Speciation. The American Naturalist, 182(5), E174-95.
  • [8] Kingsolver, J.G., Koehl M. 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39 (3), 488-504.
  • [9] Watt, W. B. 1968. Adaptive significance of pigment polymorphisms in Coliasbutterflies. I. Variation of melanin pigment in relationto thermoregulation. Evolution, 22 (3), 437-458.
  • [10] Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz C. 2004. Integrating Phylogenetics And Environmental Niche Models To Explore Speciation Mechanisms In Dendrobatid Frogs. Evolution, 58 (8), 1781-1793.
  • [11] Gür, H. 2013. The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?. Biological Journal of the Linnean Society, 109 (1), 19-32.
  • [12] Nogues-Bravo, D. 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18 (5), 521-531.
  • [13] Peterson, A.T, Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M. 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8 (7), 662-667.
  • [14] Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8 (9), 993-1009.
  • [15] Wiens, J.J., Graham, C.H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics, 36, 519-539.
  • [16] Elith, J. ve ark. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129–151.
  • [17] Peterson, A.T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59-72.
  • [18] VanDerWal, J., Shoo, L.P., Johnson, C.N., Williams, S.E. 2009. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist, 174 (2), 282-291.
  • [19] Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78 (4), 419-433.
  • [20] Peterson, A.T., Robins, C.R. 2003. Using ecological-niche modeling to predict barred owl invasions with implications for spotted owl conservation. Conservation Biology, 17 (4), 1161-1165.
  • [21] Rödder, D., Weinsheimer, F., Lötters, S. 2010. Molecules meet macroecology: Combining species distribution models and phylogeographic studies. Zootaxa, 60, 54-60.
  • [22] Sergio, G.C., Soto-Centeno, A.J., Reed, D.L. 2011. Population distribution models: species distributions are better modeled using biologically relevant data partitions. BMC Ecology, 11 (1), 20.
  • [23] Gül, S., Kumlutaş, Y., Ilgaz, Ç. 2015. Climatic preferences and distribution of 6 evolutionary lineages of Typhlops vermicularis Merrem, 1820 in Turkey using ecological niche modeling. Turkish Journal of Zoology, 39, 235-243.
  • [24] Abolafya, M., Onmuş, O., Şekercioğlu, Ç.H., Bilgin, R. 2013. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. PLoS ONE, 8 (7), e68037.
  • [25] Per, S., Erciyas Yavuz, K., Demirtaş, S. 2015. Karabaşlı çinte (Emberiza melanocephala Scopoli, 1769)’nin ekolojik niş modeli ve Türkiye’deki durumu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31 (2), 89-96.
  • [26] Karacaoğlu, Ç. 2013. Isophya rizeensis (Orthoptera:Tettigoniidae) türünün ekolojik niş modellemesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Doktora Tezi, 133s, Ankara.
  • [27] Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190 (3-4), 231–259.
  • [28] Hacet, N., Aktaç, N. 2004. Considerations on the Odonate Fauna of Turkish Thrace, with Some Taxonomic Notes. Odonatologica, 33 (3), 253-270.
  • [29] Hacet, N., Aktaç, N. 2009. Contribution to the knowledge of Odonata fauna of Southern Marmara Region of Turkey. Türkiye Entomoloji Dergisi, 33 (3), 171-178.
  • [30] Hacet, N. 2009. Odonata of the Western Black Sea Region of Turkey, with Taxonomic Notes and Species List of the Region. Odonatologica, 38 (4), 293-306.
  • [31] Miroğlu, A., Kartal, V., Salur, A. 2011. Odonata of the Eastern Black Sea Region of Turkey, with Some Taxonomic Notes. Odonatologica, 40 (2), 105-122.
  • [32] Salur, A., Kıyak S. 2006. Additional Records for the Odonata Fauna of East Mediterranean Region of Turkey. Munis Entomology & Zoology, 1 (2), 239-252.
  • [33] Salur, A., Mesci, S. 2007. Additional Records for the Odonata Fauna of Çorum Province (Turkey). Munis Entomology & Zoology, 2 (1), 169-170.
  • [34] Schneider, W. 1984 Description of Calopteryx waterstoni spec.nov. from Northeastern Turkey (Zygoptera: Calopterygidae). Odonatologica, 13 (2), 281-286.
  • [35] Phillips, S.J., Dudík, M., Schapire, R.E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, ACM Press, Newyork, 655-662.
  • [36] Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 (1), 43-57.
  • [37] Boria, R. A., Olson, L. E., Goodman, S. M., Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
  • [38] Varela, S., Anderson, R. P., Valdes, R. G., Gonzalez, F. F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37, 1084-1091.
  • [39] Hijmans, R.J., Guarino, L., Mathur, P. 2012. DIVA GIS Version 7.5 Manual. [Online]. http://www.diva-gis.org/docs/DIVA GIS_manual_7.pdf.
  • [40] Phillips, S.J. 2010. A brief tutorial on Maxent. Lessons in Conservation, 3, 107-135.
  • [41] Dumont, H. J., Demirsoy, A., Verschuren, D. 1987. Breaking the Calopteryx-Bottleneck: Taxonomy and Range of Calopteryx splendens waterstoni Schneider, 1984 and of C.splendens tschaldirica Bartenef, 1909 (Zygoptera: Calopterygidae). Odonatologica, 16 (3), 239-247.
  • [42] Çıplak, B., Demirsoy, A., Bozcuk, A. N. 1993. Distribution of Orthoptera in relation to the Anatolian Diagonal in Turkey. Articulata, 8, 1-20.
  • [43] Çıplak, B. 2003. Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodiversity and Conservation, 12, 47-64
  • [44] Şekercioğlu, C.H. ve ark. 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation, 144, 2752-2769.
  • [45] Bush A.A., Nipperess, D.A., Duursma, D.E., Theischinge, G., Turak, E., Hughes, L. 2014. Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change, Plos-One, 9(2), e88958.
  • [46] Finch, J.M., Samways, M.J., Hill, T.R., Piper, S.E., Taylor, S. 2006. Application of predictive distribution modelling to invertebrates: Odonata in South Africa. Biodiversity and Conservation, 15 (3), 4239-4251.
Year 2017, Volume: 21 Issue: 3, 935 - 941, 10.05.2017
https://doi.org/10.19113/sdufbed.53284

Abstract

References

  • [1] Mertens, J., De Coster, W., De Mayer, H., Dumont, H.J. 1992. A method for the quantitative analysis of wing spots applied to two populations of Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 21 (4), 443-451.
  • [2] Kalkman, V.J. 2006. Key to the dragonflies of Turkey, İncluding species known from Greece, Bulgaria, Lebanon, Syria, the Trans-Caucasus and Iran. Brachytron, 10 (1), 3-82.
  • [3] Demirsoy, A. 2002. Genel Zoocoğrafya ve Türkiye Zoocoğrafyası, Beşinci Baskı. Meteksan, Ankara, ss 327-348.
  • [4] Dumont, H.J., Vanfletern, J.R., De Jonckheere, J.F., Weekers, P.H.H. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54 (3), 347-362.
  • [5] Dumont, H. J., Mertens, J., De Coster, W. 1993. The Calopteryx splendens-cline in Southwest France, analysed by quantitative wingspot analysis. Odonatologica, 22 (3), 345–351.
  • [6] Hassall, C. 2014. Continental variation in wing pigmentation in Calopteryxdamselflies is related to the presence of heterospecifics. PeerJ PrePrints 2: e316v1 https://doi.org/10.7287/peerj.preprints.316v1.
  • [7] Svensson, E. I., Waller, J.T. 2013. Ecology and Sexual Selection: Evolution of Wing Pigmentation in Calopterygid Damselflies in Relation to Latitude, Sexual Dimorphism, and Speciation. The American Naturalist, 182(5), E174-95.
  • [8] Kingsolver, J.G., Koehl M. 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39 (3), 488-504.
  • [9] Watt, W. B. 1968. Adaptive significance of pigment polymorphisms in Coliasbutterflies. I. Variation of melanin pigment in relationto thermoregulation. Evolution, 22 (3), 437-458.
  • [10] Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., Moritz C. 2004. Integrating Phylogenetics And Environmental Niche Models To Explore Speciation Mechanisms In Dendrobatid Frogs. Evolution, 58 (8), 1781-1793.
  • [11] Gür, H. 2013. The effects of the Late Quaternary glacial–interglacial cycles on Anatolian ground squirrels: range expansion during the glacial periods?. Biological Journal of the Linnean Society, 109 (1), 19-32.
  • [12] Nogues-Bravo, D. 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18 (5), 521-531.
  • [13] Peterson, A.T, Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M. 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8 (7), 662-667.
  • [14] Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8 (9), 993-1009.
  • [15] Wiens, J.J., Graham, C.H. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics, 36, 519-539.
  • [16] Elith, J. ve ark. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129–151.
  • [17] Peterson, A.T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59-72.
  • [18] VanDerWal, J., Shoo, L.P., Johnson, C.N., Williams, S.E. 2009. Abundance and the environmental niche: environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist, 174 (2), 282-291.
  • [19] Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78 (4), 419-433.
  • [20] Peterson, A.T., Robins, C.R. 2003. Using ecological-niche modeling to predict barred owl invasions with implications for spotted owl conservation. Conservation Biology, 17 (4), 1161-1165.
  • [21] Rödder, D., Weinsheimer, F., Lötters, S. 2010. Molecules meet macroecology: Combining species distribution models and phylogeographic studies. Zootaxa, 60, 54-60.
  • [22] Sergio, G.C., Soto-Centeno, A.J., Reed, D.L. 2011. Population distribution models: species distributions are better modeled using biologically relevant data partitions. BMC Ecology, 11 (1), 20.
  • [23] Gül, S., Kumlutaş, Y., Ilgaz, Ç. 2015. Climatic preferences and distribution of 6 evolutionary lineages of Typhlops vermicularis Merrem, 1820 in Turkey using ecological niche modeling. Turkish Journal of Zoology, 39, 235-243.
  • [24] Abolafya, M., Onmuş, O., Şekercioğlu, Ç.H., Bilgin, R. 2013. Using citizen science data to model the distributions of common songbirds of Turkey under different global climatic change scenarios. PLoS ONE, 8 (7), e68037.
  • [25] Per, S., Erciyas Yavuz, K., Demirtaş, S. 2015. Karabaşlı çinte (Emberiza melanocephala Scopoli, 1769)’nin ekolojik niş modeli ve Türkiye’deki durumu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31 (2), 89-96.
  • [26] Karacaoğlu, Ç. 2013. Isophya rizeensis (Orthoptera:Tettigoniidae) türünün ekolojik niş modellemesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Doktora Tezi, 133s, Ankara.
  • [27] Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190 (3-4), 231–259.
  • [28] Hacet, N., Aktaç, N. 2004. Considerations on the Odonate Fauna of Turkish Thrace, with Some Taxonomic Notes. Odonatologica, 33 (3), 253-270.
  • [29] Hacet, N., Aktaç, N. 2009. Contribution to the knowledge of Odonata fauna of Southern Marmara Region of Turkey. Türkiye Entomoloji Dergisi, 33 (3), 171-178.
  • [30] Hacet, N. 2009. Odonata of the Western Black Sea Region of Turkey, with Taxonomic Notes and Species List of the Region. Odonatologica, 38 (4), 293-306.
  • [31] Miroğlu, A., Kartal, V., Salur, A. 2011. Odonata of the Eastern Black Sea Region of Turkey, with Some Taxonomic Notes. Odonatologica, 40 (2), 105-122.
  • [32] Salur, A., Kıyak S. 2006. Additional Records for the Odonata Fauna of East Mediterranean Region of Turkey. Munis Entomology & Zoology, 1 (2), 239-252.
  • [33] Salur, A., Mesci, S. 2007. Additional Records for the Odonata Fauna of Çorum Province (Turkey). Munis Entomology & Zoology, 2 (1), 169-170.
  • [34] Schneider, W. 1984 Description of Calopteryx waterstoni spec.nov. from Northeastern Turkey (Zygoptera: Calopterygidae). Odonatologica, 13 (2), 281-286.
  • [35] Phillips, S.J., Dudík, M., Schapire, R.E. 2004. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, ACM Press, Newyork, 655-662.
  • [36] Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 (1), 43-57.
  • [37] Boria, R. A., Olson, L. E., Goodman, S. M., Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77.
  • [38] Varela, S., Anderson, R. P., Valdes, R. G., Gonzalez, F. F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37, 1084-1091.
  • [39] Hijmans, R.J., Guarino, L., Mathur, P. 2012. DIVA GIS Version 7.5 Manual. [Online]. http://www.diva-gis.org/docs/DIVA GIS_manual_7.pdf.
  • [40] Phillips, S.J. 2010. A brief tutorial on Maxent. Lessons in Conservation, 3, 107-135.
  • [41] Dumont, H. J., Demirsoy, A., Verschuren, D. 1987. Breaking the Calopteryx-Bottleneck: Taxonomy and Range of Calopteryx splendens waterstoni Schneider, 1984 and of C.splendens tschaldirica Bartenef, 1909 (Zygoptera: Calopterygidae). Odonatologica, 16 (3), 239-247.
  • [42] Çıplak, B., Demirsoy, A., Bozcuk, A. N. 1993. Distribution of Orthoptera in relation to the Anatolian Diagonal in Turkey. Articulata, 8, 1-20.
  • [43] Çıplak, B. 2003. Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodiversity and Conservation, 12, 47-64
  • [44] Şekercioğlu, C.H. ve ark. 2011. Turkey’s globally important biodiversity in crisis. Biological Conservation, 144, 2752-2769.
  • [45] Bush A.A., Nipperess, D.A., Duursma, D.E., Theischinge, G., Turak, E., Hughes, L. 2014. Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change, Plos-One, 9(2), e88958.
  • [46] Finch, J.M., Samways, M.J., Hill, T.R., Piper, S.E., Taylor, S. 2006. Application of predictive distribution modelling to invertebrates: Odonata in South Africa. Biodiversity and Conservation, 15 (3), 4239-4251.
There are 46 citations in total.

Details

Journal Section Articles
Authors

Ali Miroğlu This is me

Sadık Demirtaş

Publication Date May 10, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Miroğlu, A., & Demirtaş, S. (2017). Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 935-941. https://doi.org/10.19113/sdufbed.53284
AMA Miroğlu A, Demirtaş S. Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi. J. Nat. Appl. Sci. December 2017;21(3):935-941. doi:10.19113/sdufbed.53284
Chicago Miroğlu, Ali, and Sadık Demirtaş. “Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 3 (December 2017): 935-41. https://doi.org/10.19113/sdufbed.53284.
EndNote Miroğlu A, Demirtaş S (December 1, 2017) Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 3 935–941.
IEEE A. Miroğlu and S. Demirtaş, “Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi”, J. Nat. Appl. Sci., vol. 21, no. 3, pp. 935–941, 2017, doi: 10.19113/sdufbed.53284.
ISNAD Miroğlu, Ali - Demirtaş, Sadık. “Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/3 (December 2017), 935-941. https://doi.org/10.19113/sdufbed.53284.
JAMA Miroğlu A, Demirtaş S. Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi. J. Nat. Appl. Sci. 2017;21:935–941.
MLA Miroğlu, Ali and Sadık Demirtaş. “Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 3, 2017, pp. 935-41, doi:10.19113/sdufbed.53284.
Vancouver Miroğlu A, Demirtaş S. Türkiye’deki Calopteryx splendens (Harris, 1782) (Insecta: Odonata) Alttürlerinin Ekolojik Niş Modellemesi. J. Nat. Appl. Sci. 2017;21(3):935-41.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.