BibTex RIS Cite

Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites

Year 2017, Volume: 21 Issue: 2, 299 - 305, 28.04.2017
https://doi.org/10.19113/sdufbed.57694

Abstract

In the current work, A series of chitosan/poly(vinyl alcohol)/TiO2/boron nanocomposites (CS/P/Ti-B) were prepared and their activity in the photocatalytic removal of non-steroidal anti-inflammatory drug (ibuprofen (IBP)) were evaluated for the first time. The nanocomposites were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FT-IR), and thermogravimetric analysis (TG-DTG). TGA thermograms showed the enhanced thermal stability of nanocomposites with increasing Ti-B content. In the photocatalytic experiments, the effects of Ti-B content, catalyst dosage and initial concentration were discussed and a suitable photodegradation process for enhanced removal was proposed. The photocatalytic removal of IBP increased with increasing Ti-B ratio and the kinetic rate constant of Ti-B increased from 4.516 × 10−2 min-1 (for raw Ti-B) to 5.346 × 10−2 min-1 (for CS/P/Ti-B/1). This increment could be attributed to the decreased recombination rate of the photo-generated electron-hole pairs.

References

  • [1] Kang, K., Jang, M., Cui, M., Qiu, P., Park, B. 2014. Preparation and characterization of magnetic-core titanium dioxide: Implications for photocatalytic removal of ibuprofen. Journal of Molecular Catalysis A: Chemical, 390, 178–186.
  • [2] Tran, N., Drogui, P., Nguyen, L., Brar, S.K. 2015. Optimization of sono-electrochemical oxidation of ibuprofen in wastewater. Journal of Environmental Chemical Engineering, 3, 2637–2646.
  • [3] Zainal, Z., Hui, L.K., Hussein, M.Z., Abdullah, A.H., Hamadneh, I.R. 2009. Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. Journal of Hazardous Materials, 164, 138–145.
  • [4] Shi, J.W. 2009. Preparation of Fe(III) and Ho(III) co-doped TiO2 films loaded on activated carbon fibers and their photocatalytic activities. Chemical Engineering Journal, 151, 241–246.
  • [5] Choina, J. Fischer, C., Flechsig, G.U., Kosslick, H., Tuan, V.A., Tuyen, N.D., Tuyen, N.A., Schulz, A. 2014. Photocatalytic properties of Zr-doped titania in the degradation of the pharmaceutical ibuprofen. Journal of Photochemistry and Photobiology A: Chemistry, 274, 108–116.
  • [6] Afzal, S., Samsudin, E.M., Muna, L.K., Julkapli, N.M., Hamid, S.B.A. 2017. Room temperature synthesis of TiO2 supported chitosan photocatalyst: Study on physicochemical and adsorption photo-decolorization properties. Materials Research Bulletin, 86, 24–29.
  • [7] Pucher, P., Benmami, M., Azouani R., Krammer, G., Chhor, K., Bocquet, J.-F., Kanaev, A.V. 2007. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 332, 297–303.
  • [8] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J. 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments, 77, 327–334.
  • [9] Zhang, J., Wang, X., Bu, Y., Wang, X., Song, J., Xia, P., Ma, R., Louangsouphom, B., Ma, S., Zhao, J. 2016. Remediation of diesel polluted water through buoyant sunlight responsive iron and nitrogen co-doped TiO2 coated on chitosan carbonized fly ash. Chemical Engineering Journal, 306, 460–470.
  • [10] Dhanya, A., Aparna, K. 2016. Synthesis and Evaluation of TiO2/Chitosan based hydrogel for the Adsorptional Photocatalytic Degradation of Azo and Anthraquinone Dye under UV Light Irradiation. Procedia Technology, 24, 611 – 618.
  • [11] Nawi, M.A., Jawad, A.H., Sabar, S., Wan Ngah, W.S. 2011. Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination, 280, 288–296.
  • [12] Preethi, T., Abarna, B., Rajarajeswari, G.R. 2014. Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesized mesoporous nano-titania photocatalyst. Applied Surface Science, 317, 90–97.
  • [13] Yang, D., Li, J., Jiang, Z., Lu, L., Chen, X. 2009. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 64, 3130–3137.
  • [14] Samadi, S., Khalilian, F., Tabatabaee, A. 2014. Synthesis, characterization and application of Cu–TiO2/chitosan nanocomposite thin film for the removal of some heavy metals from aquatic media. Journal of Nanostructure in Chemistry, 4, 84.
  • [15] Jiang, R., Zhu, H.-Y., Chen, H.-H., Yao, J., Fu, Y.-Q., Zhang, Z.-Y., Xu, Y.-M. 2014. Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Applied Surface Science, 319, 189–196.
  • [16] Hegedus, P., Szabó-Bárdos, E., Horvátha, O., Szabó, P., Horváth, K. 2017. Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol). Catalysis Today, 284, 179–186.
  • [17] Habiba, U., Islam, S., Siddique, T.A., Afifi, A.M., Chin, B. 2016. Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na-Titanate/TiO2 composites synthesized by solution casting method. Carbohydrate Polymers, 149, 317–331.
  • [18] Abd El-Rehim, E.S.A. 2012. Photo-catalytic degradation of metanil yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. Reactive and Functional Polymers, 72, 823–831.
  • [19] Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M. 2012. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Journal of Hazardous Materials, 227–228, 185–194.
  • [20] Bilgin Simsek, E. 2017. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Applied Catalysis B: Environmental, 200, 309–322.
  • [21] Hasmath Farzana, M., Meenakshi, S. 2015. Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 72, 1265–1271.
  • [22] Nawi, M.A., Sabar, S., Jawad, A.H., W.S.W. Ngah Sheilatina. 2010. Adsorption of reactive Red 4 by immobilized chitosan on glass plate: towards the design of immobilized TiO2-chitosan synergistic photocatalyst-adsorption bilayer system. Biochemical Engineering Journal, 49, 317–325.
  • [23] Vaiano, V., Iervolino, G., Sannino, D., Rizzo, L., Sarno, G., Farina, A., 2014. Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2. Applied Catalysis B: Environmental, 160–161, 247–253.
  • [24] Bechambi, O., Sayadi, S., Najjar, W. 2015. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 32, 201–210.
  • [25] Gu, L., Chen, Z., Sun, C., Wei, B., Yu, X. 2010. Photocatalytic degradation of 2,4-dichlorophenol using granular activated carbon supported TiO2. Desalination, 263, 107–112.
  • [26] Nezamzadeh-Ejhieh, A., Karimi-Shamsabadi, M. 2013. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation, Chemical Engineering Journal, 228, 631–641.
Year 2017, Volume: 21 Issue: 2, 299 - 305, 28.04.2017
https://doi.org/10.19113/sdufbed.57694

Abstract

References

  • [1] Kang, K., Jang, M., Cui, M., Qiu, P., Park, B. 2014. Preparation and characterization of magnetic-core titanium dioxide: Implications for photocatalytic removal of ibuprofen. Journal of Molecular Catalysis A: Chemical, 390, 178–186.
  • [2] Tran, N., Drogui, P., Nguyen, L., Brar, S.K. 2015. Optimization of sono-electrochemical oxidation of ibuprofen in wastewater. Journal of Environmental Chemical Engineering, 3, 2637–2646.
  • [3] Zainal, Z., Hui, L.K., Hussein, M.Z., Abdullah, A.H., Hamadneh, I.R. 2009. Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. Journal of Hazardous Materials, 164, 138–145.
  • [4] Shi, J.W. 2009. Preparation of Fe(III) and Ho(III) co-doped TiO2 films loaded on activated carbon fibers and their photocatalytic activities. Chemical Engineering Journal, 151, 241–246.
  • [5] Choina, J. Fischer, C., Flechsig, G.U., Kosslick, H., Tuan, V.A., Tuyen, N.D., Tuyen, N.A., Schulz, A. 2014. Photocatalytic properties of Zr-doped titania in the degradation of the pharmaceutical ibuprofen. Journal of Photochemistry and Photobiology A: Chemistry, 274, 108–116.
  • [6] Afzal, S., Samsudin, E.M., Muna, L.K., Julkapli, N.M., Hamid, S.B.A. 2017. Room temperature synthesis of TiO2 supported chitosan photocatalyst: Study on physicochemical and adsorption photo-decolorization properties. Materials Research Bulletin, 86, 24–29.
  • [7] Pucher, P., Benmami, M., Azouani R., Krammer, G., Chhor, K., Bocquet, J.-F., Kanaev, A.V. 2007. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst. Applied Catalysis A: General, 332, 297–303.
  • [8] Huang, M., Xu, C., Wu, Z., Huang, Y., Lin, J., Wu, J. 2008. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite, Dyes Pigments, 77, 327–334.
  • [9] Zhang, J., Wang, X., Bu, Y., Wang, X., Song, J., Xia, P., Ma, R., Louangsouphom, B., Ma, S., Zhao, J. 2016. Remediation of diesel polluted water through buoyant sunlight responsive iron and nitrogen co-doped TiO2 coated on chitosan carbonized fly ash. Chemical Engineering Journal, 306, 460–470.
  • [10] Dhanya, A., Aparna, K. 2016. Synthesis and Evaluation of TiO2/Chitosan based hydrogel for the Adsorptional Photocatalytic Degradation of Azo and Anthraquinone Dye under UV Light Irradiation. Procedia Technology, 24, 611 – 618.
  • [11] Nawi, M.A., Jawad, A.H., Sabar, S., Wan Ngah, W.S. 2011. Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination, 280, 288–296.
  • [12] Preethi, T., Abarna, B., Rajarajeswari, G.R. 2014. Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesized mesoporous nano-titania photocatalyst. Applied Surface Science, 317, 90–97.
  • [13] Yang, D., Li, J., Jiang, Z., Lu, L., Chen, X. 2009. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 64, 3130–3137.
  • [14] Samadi, S., Khalilian, F., Tabatabaee, A. 2014. Synthesis, characterization and application of Cu–TiO2/chitosan nanocomposite thin film for the removal of some heavy metals from aquatic media. Journal of Nanostructure in Chemistry, 4, 84.
  • [15] Jiang, R., Zhu, H.-Y., Chen, H.-H., Yao, J., Fu, Y.-Q., Zhang, Z.-Y., Xu, Y.-M. 2014. Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Applied Surface Science, 319, 189–196.
  • [16] Hegedus, P., Szabó-Bárdos, E., Horvátha, O., Szabó, P., Horváth, K. 2017. Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol). Catalysis Today, 284, 179–186.
  • [17] Habiba, U., Islam, S., Siddique, T.A., Afifi, A.M., Chin, B. 2016. Adsorption and photocatalytic degradation of anionic dyes on Chitosan/PVA/Na-Titanate/TiO2 composites synthesized by solution casting method. Carbohydrate Polymers, 149, 317–331.
  • [18] Abd El-Rehim, E.S.A. 2012. Photo-catalytic degradation of metanil yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. Reactive and Functional Polymers, 72, 823–831.
  • [19] Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., Yang, M. 2012. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Journal of Hazardous Materials, 227–228, 185–194.
  • [20] Bilgin Simsek, E. 2017. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Applied Catalysis B: Environmental, 200, 309–322.
  • [21] Hasmath Farzana, M., Meenakshi, S. 2015. Photocatalytic aptitude of titanium dioxide impregnated chitosan beads for the reduction of Cr(VI). International Journal of Biological Macromolecules, 72, 1265–1271.
  • [22] Nawi, M.A., Sabar, S., Jawad, A.H., W.S.W. Ngah Sheilatina. 2010. Adsorption of reactive Red 4 by immobilized chitosan on glass plate: towards the design of immobilized TiO2-chitosan synergistic photocatalyst-adsorption bilayer system. Biochemical Engineering Journal, 49, 317–325.
  • [23] Vaiano, V., Iervolino, G., Sannino, D., Rizzo, L., Sarno, G., Farina, A., 2014. Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2. Applied Catalysis B: Environmental, 160–161, 247–253.
  • [24] Bechambi, O., Sayadi, S., Najjar, W. 2015. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 32, 201–210.
  • [25] Gu, L., Chen, Z., Sun, C., Wei, B., Yu, X. 2010. Photocatalytic degradation of 2,4-dichlorophenol using granular activated carbon supported TiO2. Desalination, 263, 107–112.
  • [26] Nezamzadeh-Ejhieh, A., Karimi-Shamsabadi, M. 2013. Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation, Chemical Engineering Journal, 228, 631–641.
There are 26 citations in total.

Details

Journal Section Articles
Authors

Esra Bilgin Simsek

Publication Date April 28, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Bilgin Simsek, E. (2017). Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 299-305. https://doi.org/10.19113/sdufbed.57694
AMA Bilgin Simsek E. Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites. J. Nat. Appl. Sci. August 2017;21(2):299-305. doi:10.19113/sdufbed.57694
Chicago Bilgin Simsek, Esra. “Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 299-305. https://doi.org/10.19113/sdufbed.57694.
EndNote Bilgin Simsek E (August 1, 2017) Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 299–305.
IEEE E. Bilgin Simsek, “Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 299–305, 2017, doi: 10.19113/sdufbed.57694.
ISNAD Bilgin Simsek, Esra. “Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 299-305. https://doi.org/10.19113/sdufbed.57694.
JAMA Bilgin Simsek E. Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites. J. Nat. Appl. Sci. 2017;21:299–305.
MLA Bilgin Simsek, Esra. “Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 299-05, doi:10.19113/sdufbed.57694.
Vancouver Bilgin Simsek E. Investigation of Photocatalytic Activity of Chitosan/Poly(vinyl alcohol)/TiO2/Boron Nanocomposites. J. Nat. Appl. Sci. 2017;21(2):299-305.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.