BibTex RIS Cite

Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties

Year 2017, Volume: 21 Issue: 2, 311 - 315, 11.05.2017
https://doi.org/10.19113/sdufbed.61527

Abstract

Spinel-type metal oxide nanoparticles were synthesized via co-precipitation approach. Mono ethylene glycol (MEG) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The structural, morphological and thermal properties of the calcined sample were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), raman spectroscopy and thermal analysis. Energy-dispersive X-ray analysis (EDX) has also proved that the element composition was composed of pure single phase and contained Co, Fe and O elements. The mean crystallite size of the prepared ferrite nanoparticles was determined to be in the range of 30-345 nm based on the SEM images. The magnetic measurements of the CoFe2O4 nanoparticles were examined with a vibrating sample magnetometer (VSM) at room temperature to determine their magnetic behavior and the magnetic parameters were found.

References

  • [1] Sener, T., Kayhan, E., Sevim, M., Metin, O. 2015. Monodisperse CoFe2O4 Nanoparticles Supported on Vulcan XC-72: High Performance Electrode Materials for Lithium-Air and Lithium-Ion Batteries. Journal of Power Sources, 288, 36-41.
  • [2] Ding, Y., Yang, Y. F., Shao, H. X. 2013. One-Pot Synthesis of NiFe2O4/C Composite as an Anode Material for Lithium-Ion Batteries. Journal of Power Sources, 244, 610-613.
  • [3] Rai, A. K., Thi, T. V., Gim, J., Mathew, V., Kim, J. 2014. Co1-xFe2+xO4 (x=0.1, 0.2) Anode Materials for Rechargeable Lithium-Ion Batteries. Solid State Sciences, 36, 1-7.
  • [4] Zhang, M., Lu, J., Zhang, J. N., Zhang, Z. H. 2016. Magnetic Carbon Nanotube Supported Cu (CoFe2O4/CNT-Cu) Catalyst: A Sustainable Catalyst for the Synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines. Catalysis Communications, 78, 26-32.
  • [5] El-Remaily, M. A. A. A., Hamad, H. A. 2015. Synthesis and Characterization of Highly Stable Superparamagnetic CoFe2O4 Nanoparticles as a Catalyst for Novel Synthesis of thiazolo[4,5-b]quinolin-9-one Derivatives in Aqueous Medium. Journal of Molecular Catalysis A-Chemical, 404, 148-155.
  • [6] Liu, F. J., Laurent, S., Roch Vander Elst, L., Muller, R. N. 2013. Size-Controlled Synthesis of CoFe2O4 Nanoparticles Potential Contrast Agent for MRI and Investigation on Their Size-Dependent Magnetic Properties. Journal of Nanomaterials, 2013, 1-9.
  • [7] Sanpo, N., Berndt, C. C., Wen, C., Wang, J. 2013. Transition Metal-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications. Acta Biomaterialia, 9, 5830-5837.
  • [8] Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F. 2008. Studies on the Magnetism of Cobalt Ferrite Nanocrystals Synthesized by Hydrothermal Method. Journal of Solid State Chemistry, 181, 245-252.
  • [9] Maaz, K., Mumtaz, A., Hasanain, S. K., Ceylan, A. 2007. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. Journal of Magnetism and Magnetic Materials, 308, 289-295.
  • [10] Lima, A. C., Morales, M. A., Araujo, J. H., Soares, J. M., Melo, D. M. A., Carrico, A. S. 2015. Evaluation of (BH)(max) and Magnetic Anisotropy of Cobalt Ferrite Nanoparticles Synthesized in Gelatin. Ceramics International, 41, 11804-11809.
  • [11] Yardımcı, F. S., Şenel, M., Baykal, A. 2012. Amperometric Hydrogen Peroxide Biosensor Based on Cobalt Ferrite–Chitosan Nanocomposite. Materials Science and Engineering: C, 32, 269-275.
  • [12] Tong, J., Bo, L., Li, Z., Lei, Z., Xia, C. 2009. Magnetic CoFe2O4 Nanocrystal: A Novel and Efficient Heterogeneous Catalyst for Aerobic Oxidation of Cyclohexane. Journal of Molecular Catalysis A: Chemical, 307, 58-63.
  • [13] Rajput, J. K., Kaur, G. 2013. CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for "click" Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature. Chinese Journal of Catalysis, 34, 1697-1704.
  • [14] Xu, C., Sun, S. 2013. New Forms of Superparamagnetic Nanoparticles for Biomedical Applications. Advanced Drug Delivery Reviews, 65, 732-743.
  • [15] Raghasudha, M., Ravinder, D., Veerasomaiah, P. 2016. Investigation of Superparamagnetism in Pure and Chromium Substituted Cobalt Nanoferrite. Journal of Magnetism and Magnetic Materials, 420, 45-50.
  • [16] Dong, N., Zhong, M., Fei, P., Lei, Z. Q., Su, B. T. 2016. Magnetic and Electrochemical Properties of PANI-CoFe2O4 Nanocomposites Synthesized via a Novel One-Step Solvothermal Method. Journal of Alloys and Compounds, 660, 382-386.
  • [17] Ansari, S., Arabi, H., Sadr, S. M. A. 2016. Structural, Morphological, Optical and Magnetic Properties of Al-Doped CoFe2O4 Nanoparticles Prepared by Sol-Gel Auto-Combustion Method. Journal of Superconductivity and Novel Magnetism, 29, 1525-1532.
  • [18] Feng, H. X., Chen, B. Y., Zhang, D. Y., Zhang, J. Q., Tan, L. 2014. Preparation and Characterization of the Cobalt Ferrite Nano-Particles by Reverse Coprecipitation. Journal of Magnetism and Magnetic Materials, 356, 68-72.
  • [19] Naseri, M. G., Saion, E. B., Hashim, M., Shaari, A. H., Ahangar, H. A. 2011. Synthesis and Characterization of Zinc Ferrite Nanoparticles by a Thermal Treatment Method. Solid State Communications, 151, 1031-1035.
  • [20] Rashidi, S., Ataie, A. 2016. Structural and Magnetic Characteristics of PVA/CoFe2O4 NanoComposites Prepared via Mechanical Alloying Method. Materials Research Bulletin, 80, 321-328.
  • [21] Briceño, S., Brämer-Escamilla, W., Silva, P., Delgado, G. E., Plaza, E., Palacios, J., Cañizales, E. 2012. Effects of Synthesis Variables on the Magnetic Properties of CoFe2O4 Nanoparticles. Journal of Magnetism and Magnetic Materials, 324, 2926-2931.
  • [22] Chandramohan, P., Srinivasan, M. P., Velmurugan, S., Narasimhan S. V. 2011. Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4. Journal of Solid State Chemistry, 184, 9-96.
  • [23] Teixeiraa, A. M. R. de F., Ogasawarab, T. Nóbrega, M. C. de S. 2006 Investigation of Sintered Cobalt-zinc Ferrite Synthesized by Coprecipitation at Different Temperatures: A Relation between Microstructure and Hysteresis Curves. Materials Research, 9, 257-262.
  • [24] Dey, S., Ghose, J. 2003. Synthesis, Characterisation and Magnetic Studies on Nanocrystalline Co0.2Zn0.8Fe2O4. Materials Research Bulletin, 38, 1653–1660.
Year 2017, Volume: 21 Issue: 2, 311 - 315, 11.05.2017
https://doi.org/10.19113/sdufbed.61527

Abstract

References

  • [1] Sener, T., Kayhan, E., Sevim, M., Metin, O. 2015. Monodisperse CoFe2O4 Nanoparticles Supported on Vulcan XC-72: High Performance Electrode Materials for Lithium-Air and Lithium-Ion Batteries. Journal of Power Sources, 288, 36-41.
  • [2] Ding, Y., Yang, Y. F., Shao, H. X. 2013. One-Pot Synthesis of NiFe2O4/C Composite as an Anode Material for Lithium-Ion Batteries. Journal of Power Sources, 244, 610-613.
  • [3] Rai, A. K., Thi, T. V., Gim, J., Mathew, V., Kim, J. 2014. Co1-xFe2+xO4 (x=0.1, 0.2) Anode Materials for Rechargeable Lithium-Ion Batteries. Solid State Sciences, 36, 1-7.
  • [4] Zhang, M., Lu, J., Zhang, J. N., Zhang, Z. H. 2016. Magnetic Carbon Nanotube Supported Cu (CoFe2O4/CNT-Cu) Catalyst: A Sustainable Catalyst for the Synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines. Catalysis Communications, 78, 26-32.
  • [5] El-Remaily, M. A. A. A., Hamad, H. A. 2015. Synthesis and Characterization of Highly Stable Superparamagnetic CoFe2O4 Nanoparticles as a Catalyst for Novel Synthesis of thiazolo[4,5-b]quinolin-9-one Derivatives in Aqueous Medium. Journal of Molecular Catalysis A-Chemical, 404, 148-155.
  • [6] Liu, F. J., Laurent, S., Roch Vander Elst, L., Muller, R. N. 2013. Size-Controlled Synthesis of CoFe2O4 Nanoparticles Potential Contrast Agent for MRI and Investigation on Their Size-Dependent Magnetic Properties. Journal of Nanomaterials, 2013, 1-9.
  • [7] Sanpo, N., Berndt, C. C., Wen, C., Wang, J. 2013. Transition Metal-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications. Acta Biomaterialia, 9, 5830-5837.
  • [8] Zhao, L., Zhang, H., Xing, Y., Song, S., Yu, S., Shi, W., Guo, X., Yang, J., Lei, Y., Cao, F. 2008. Studies on the Magnetism of Cobalt Ferrite Nanocrystals Synthesized by Hydrothermal Method. Journal of Solid State Chemistry, 181, 245-252.
  • [9] Maaz, K., Mumtaz, A., Hasanain, S. K., Ceylan, A. 2007. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route. Journal of Magnetism and Magnetic Materials, 308, 289-295.
  • [10] Lima, A. C., Morales, M. A., Araujo, J. H., Soares, J. M., Melo, D. M. A., Carrico, A. S. 2015. Evaluation of (BH)(max) and Magnetic Anisotropy of Cobalt Ferrite Nanoparticles Synthesized in Gelatin. Ceramics International, 41, 11804-11809.
  • [11] Yardımcı, F. S., Şenel, M., Baykal, A. 2012. Amperometric Hydrogen Peroxide Biosensor Based on Cobalt Ferrite–Chitosan Nanocomposite. Materials Science and Engineering: C, 32, 269-275.
  • [12] Tong, J., Bo, L., Li, Z., Lei, Z., Xia, C. 2009. Magnetic CoFe2O4 Nanocrystal: A Novel and Efficient Heterogeneous Catalyst for Aerobic Oxidation of Cyclohexane. Journal of Molecular Catalysis A: Chemical, 307, 58-63.
  • [13] Rajput, J. K., Kaur, G. 2013. CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for "click" Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature. Chinese Journal of Catalysis, 34, 1697-1704.
  • [14] Xu, C., Sun, S. 2013. New Forms of Superparamagnetic Nanoparticles for Biomedical Applications. Advanced Drug Delivery Reviews, 65, 732-743.
  • [15] Raghasudha, M., Ravinder, D., Veerasomaiah, P. 2016. Investigation of Superparamagnetism in Pure and Chromium Substituted Cobalt Nanoferrite. Journal of Magnetism and Magnetic Materials, 420, 45-50.
  • [16] Dong, N., Zhong, M., Fei, P., Lei, Z. Q., Su, B. T. 2016. Magnetic and Electrochemical Properties of PANI-CoFe2O4 Nanocomposites Synthesized via a Novel One-Step Solvothermal Method. Journal of Alloys and Compounds, 660, 382-386.
  • [17] Ansari, S., Arabi, H., Sadr, S. M. A. 2016. Structural, Morphological, Optical and Magnetic Properties of Al-Doped CoFe2O4 Nanoparticles Prepared by Sol-Gel Auto-Combustion Method. Journal of Superconductivity and Novel Magnetism, 29, 1525-1532.
  • [18] Feng, H. X., Chen, B. Y., Zhang, D. Y., Zhang, J. Q., Tan, L. 2014. Preparation and Characterization of the Cobalt Ferrite Nano-Particles by Reverse Coprecipitation. Journal of Magnetism and Magnetic Materials, 356, 68-72.
  • [19] Naseri, M. G., Saion, E. B., Hashim, M., Shaari, A. H., Ahangar, H. A. 2011. Synthesis and Characterization of Zinc Ferrite Nanoparticles by a Thermal Treatment Method. Solid State Communications, 151, 1031-1035.
  • [20] Rashidi, S., Ataie, A. 2016. Structural and Magnetic Characteristics of PVA/CoFe2O4 NanoComposites Prepared via Mechanical Alloying Method. Materials Research Bulletin, 80, 321-328.
  • [21] Briceño, S., Brämer-Escamilla, W., Silva, P., Delgado, G. E., Plaza, E., Palacios, J., Cañizales, E. 2012. Effects of Synthesis Variables on the Magnetic Properties of CoFe2O4 Nanoparticles. Journal of Magnetism and Magnetic Materials, 324, 2926-2931.
  • [22] Chandramohan, P., Srinivasan, M. P., Velmurugan, S., Narasimhan S. V. 2011. Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4. Journal of Solid State Chemistry, 184, 9-96.
  • [23] Teixeiraa, A. M. R. de F., Ogasawarab, T. Nóbrega, M. C. de S. 2006 Investigation of Sintered Cobalt-zinc Ferrite Synthesized by Coprecipitation at Different Temperatures: A Relation between Microstructure and Hysteresis Curves. Materials Research, 9, 257-262.
  • [24] Dey, S., Ghose, J. 2003. Synthesis, Characterisation and Magnetic Studies on Nanocrystalline Co0.2Zn0.8Fe2O4. Materials Research Bulletin, 38, 1653–1660.
There are 24 citations in total.

Details

Journal Section Articles
Authors

Mesut Özdinçer

Sefa Durmuş

Aslıhan Dalmaz

Publication Date May 11, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Özdinçer, M., Durmuş, S., & Dalmaz, A. (2017). Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 311-315. https://doi.org/10.19113/sdufbed.61527
AMA Özdinçer M, Durmuş S, Dalmaz A. Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties. J. Nat. Appl. Sci. August 2017;21(2):311-315. doi:10.19113/sdufbed.61527
Chicago Özdinçer, Mesut, Sefa Durmuş, and Aslıhan Dalmaz. “Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 311-15. https://doi.org/10.19113/sdufbed.61527.
EndNote Özdinçer M, Durmuş S, Dalmaz A (August 1, 2017) Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 311–315.
IEEE M. Özdinçer, S. Durmuş, and A. Dalmaz, “Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 311–315, 2017, doi: 10.19113/sdufbed.61527.
ISNAD Özdinçer, Mesut et al. “Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 311-315. https://doi.org/10.19113/sdufbed.61527.
JAMA Özdinçer M, Durmuş S, Dalmaz A. Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties. J. Nat. Appl. Sci. 2017;21:311–315.
MLA Özdinçer, Mesut et al. “Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 311-5, doi:10.19113/sdufbed.61527.
Vancouver Özdinçer M, Durmuş S, Dalmaz A. Magnetic Spinel-Type CoFe2O4 Nanoparticles: Synthesis and Investigation of Structural, Morphological Properties. J. Nat. Appl. Sci. 2017;21(2):311-5.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.