BibTex RIS Cite

On the Quaternionic Focal Curves

Year 2017, Volume: 21 Issue: 2, 357 - 366, 13.06.2017

Abstract

In this study, a brief summary about quaternions and quaternionic curves are firstly presented. Also, the definition of focal curve is given. The focal curve of a smooth curve consists of the centers of its osculating hypersphere.  By using this definition and the quaternionic osculating hyperspheres of these curves, the quaternionic focal curves in the spaces $\Q$ and $\Q_\nu$ with index $\nu=\{1,2\}$ are discussed. Some relations about spatial semi-real quaternionic curves and semi-real quaternionic curves are examined by using focal curvatures and "scalar Frenet equations" between the focal curvatures. Then, the notions: such as vertex, flattenings, a symmetry point are defined for these curves. Moreover, the relation between the Frenet apparatus of a quaternionic curve and the Frenet apparatus of its quaternionic focal curve are presented.

References

  • [1] Ward, J. P. 1997. Quaternions and Cayley Numbers, Kluwer Academic Publishers, Boston/London.
  • [2] Bharathi, K. and Nagaraj, M. 1987. Quaternion Valued Function of a Real Variable Serret-Frenet Formulae, Indian Journal of Pure and Applied Mathematics. 18 (6), 507–511.
  • [3] Tuna, A. 2002. Serret Frenet formulae for Quaternionic Curves in Semi Euclidean Space. Master Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Science, Isparta, Turkey.
  • [4] Çöken, A. C. and Tuna, A. 2004. On the quaternionic inclined curves in the semi-Euclidean space E42, Applied Mathematics and Computation. 155 (2), 373–389.
  • [5] Kahraman, F., Gök, İ. and Hacısalihoğlu, H. H. 2012. On the quaternionic B2 slant helices in the semi- Euclidean space E42, Applied Mathematics and Computation. 218(11) , 6391–6400.
  • [6] Hacısalihoğlu, H. H. 1993. Diferensiyel Geometri, Faculty of Sciences University of Ankara Press.
  • [7] Sabuncuoğlu, A. 2010. Diferensiyel Geometri. Nobel Press.
  • [8] Struik, D. J. 2012. Lectures on Classical Differential Geometry. Second edition, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
  • [9] Sağlam, D. 2012. On the Osculating Spheres of a Real Quaternionic Curve in the Euclidean Space E4, International Journal of Mathematical Combinatorics. 3, 46–53.
  • [10] Soytürk, E., İlarslan, K. and Sağlam, D. 2005. Osculating spheres and osculating circles of a curve in semi-Reimannian space, Communications, Faculty of Science. University of Ankara Series A1. 54 (2), 39–48.
  • [11] Bekta¸s, Ö., (Bayrak) Gürses, N. and Yüce, S. 2014. Osculating Spheres of a Semi Real Quaternionic Curves in E42, European Journal of Pure and Applied Mathematics. 7 (1), 86–96.
  • [12] Uribe-Vargas, R. 2005. On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc. 36 (3), 285–307.
  • [13] Özdemir, M. 2004. On the Focal Curvatures of Nonlightlike Curves in Minkowski (m+1)-Space, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 16 (3), 401–409.
  • [14] Öztürk, G. and Arslan, K. 2016. On focal curves in Euclidean n-space Rn, Novi Sad Journal of Mathematics, 46 (1), 35-44.
  • [15] Şimşek, H. 2016. Focal curves and focal surfaces in finite dimensional minkowski space, Phd Thesis, Akdeniz University, 119 pages.
  • [16] Wang, Z., Pei, D., Chen, L., Kong, L. and Han, Q. 2012. Singularities of focal surfaces of null Cartan curves in Minkowski 3-space, Abstract and Applied Analysis, 1-20.
  • [17] Liu, X. and Wang, Z. 2015. On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, Journal of Nonlinear Science and Applications, 8(5): 628-639.
  • [18] Şimşek, H. 2017. On focal curves of null Cartan curves, Turkish Journal of Mathematics, DOI: 10.3906/mat-1604-79.
  • [19] Asil, V., Ba¸s, S. and Körpınar, T. 2013. On Construction of D-Focal Curves in Euclidean 3-Space M3, Bol. Soc. Paran. Mat., (3s.) v. 31, 273-277.
  • [20] Körpınar, T., Turhan, E. and Bonilla, JL. 2014. Focal Curves of Bıharmonıc Curves in the SL R 2, International Journal of Mathematical Engineering and Science ISSN : 2277-6982 1(2).
  • [21] Körpınar, T. and Turhan, E. 2011. New representations of focal curves in the special Ricci Symmetric Para-Sasakian Manifold P, Revista Notas de Matemática, Vol.7(2), No. 320, 195-201.
  • [22] Tuna Aksoy, A. and Çöken, A. C. 2015. Serret-Frenet Formulae for Null Quaternionic Curves in Semi Euclidean 4-Space R41, Acta Physica Polonica A. 128 (2-B).
  • [23] Lopez, R. 2014. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 7(1), 44–107.
Year 2017, Volume: 21 Issue: 2, 357 - 366, 13.06.2017

Abstract

References

  • [1] Ward, J. P. 1997. Quaternions and Cayley Numbers, Kluwer Academic Publishers, Boston/London.
  • [2] Bharathi, K. and Nagaraj, M. 1987. Quaternion Valued Function of a Real Variable Serret-Frenet Formulae, Indian Journal of Pure and Applied Mathematics. 18 (6), 507–511.
  • [3] Tuna, A. 2002. Serret Frenet formulae for Quaternionic Curves in Semi Euclidean Space. Master Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Science, Isparta, Turkey.
  • [4] Çöken, A. C. and Tuna, A. 2004. On the quaternionic inclined curves in the semi-Euclidean space E42, Applied Mathematics and Computation. 155 (2), 373–389.
  • [5] Kahraman, F., Gök, İ. and Hacısalihoğlu, H. H. 2012. On the quaternionic B2 slant helices in the semi- Euclidean space E42, Applied Mathematics and Computation. 218(11) , 6391–6400.
  • [6] Hacısalihoğlu, H. H. 1993. Diferensiyel Geometri, Faculty of Sciences University of Ankara Press.
  • [7] Sabuncuoğlu, A. 2010. Diferensiyel Geometri. Nobel Press.
  • [8] Struik, D. J. 2012. Lectures on Classical Differential Geometry. Second edition, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
  • [9] Sağlam, D. 2012. On the Osculating Spheres of a Real Quaternionic Curve in the Euclidean Space E4, International Journal of Mathematical Combinatorics. 3, 46–53.
  • [10] Soytürk, E., İlarslan, K. and Sağlam, D. 2005. Osculating spheres and osculating circles of a curve in semi-Reimannian space, Communications, Faculty of Science. University of Ankara Series A1. 54 (2), 39–48.
  • [11] Bekta¸s, Ö., (Bayrak) Gürses, N. and Yüce, S. 2014. Osculating Spheres of a Semi Real Quaternionic Curves in E42, European Journal of Pure and Applied Mathematics. 7 (1), 86–96.
  • [12] Uribe-Vargas, R. 2005. On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc. 36 (3), 285–307.
  • [13] Özdemir, M. 2004. On the Focal Curvatures of Nonlightlike Curves in Minkowski (m+1)-Space, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 16 (3), 401–409.
  • [14] Öztürk, G. and Arslan, K. 2016. On focal curves in Euclidean n-space Rn, Novi Sad Journal of Mathematics, 46 (1), 35-44.
  • [15] Şimşek, H. 2016. Focal curves and focal surfaces in finite dimensional minkowski space, Phd Thesis, Akdeniz University, 119 pages.
  • [16] Wang, Z., Pei, D., Chen, L., Kong, L. and Han, Q. 2012. Singularities of focal surfaces of null Cartan curves in Minkowski 3-space, Abstract and Applied Analysis, 1-20.
  • [17] Liu, X. and Wang, Z. 2015. On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, Journal of Nonlinear Science and Applications, 8(5): 628-639.
  • [18] Şimşek, H. 2017. On focal curves of null Cartan curves, Turkish Journal of Mathematics, DOI: 10.3906/mat-1604-79.
  • [19] Asil, V., Ba¸s, S. and Körpınar, T. 2013. On Construction of D-Focal Curves in Euclidean 3-Space M3, Bol. Soc. Paran. Mat., (3s.) v. 31, 273-277.
  • [20] Körpınar, T., Turhan, E. and Bonilla, JL. 2014. Focal Curves of Bıharmonıc Curves in the SL R 2, International Journal of Mathematical Engineering and Science ISSN : 2277-6982 1(2).
  • [21] Körpınar, T. and Turhan, E. 2011. New representations of focal curves in the special Ricci Symmetric Para-Sasakian Manifold P, Revista Notas de Matemática, Vol.7(2), No. 320, 195-201.
  • [22] Tuna Aksoy, A. and Çöken, A. C. 2015. Serret-Frenet Formulae for Null Quaternionic Curves in Semi Euclidean 4-Space R41, Acta Physica Polonica A. 128 (2-B).
  • [23] Lopez, R. 2014. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 7(1), 44–107.
There are 23 citations in total.

Details

Journal Section Articles
Authors

Nurten (bayrak) Gürses

Özcan Bektaş

Salim Yüce

Publication Date June 13, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA (bayrak) Gürses, N., Bektaş, Ö., & Yüce, S. (2017). On the Quaternionic Focal Curves. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 357-366. https://doi.org/10.19113/sdufbed.14005
AMA (bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. J. Nat. Appl. Sci. August 2017;21(2):357-366. doi:10.19113/sdufbed.14005
Chicago (bayrak) Gürses, Nurten, Özcan Bektaş, and Salim Yüce. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 357-66. https://doi.org/10.19113/sdufbed.14005.
EndNote (bayrak) Gürses N, Bektaş Ö, Yüce S (August 1, 2017) On the Quaternionic Focal Curves. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 357–366.
IEEE N. (bayrak) Gürses, Ö. Bektaş, and S. Yüce, “On the Quaternionic Focal Curves”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 357–366, 2017, doi: 10.19113/sdufbed.14005.
ISNAD (bayrak) Gürses, Nurten et al. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 357-366. https://doi.org/10.19113/sdufbed.14005.
JAMA (bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. J. Nat. Appl. Sci. 2017;21:357–366.
MLA (bayrak) Gürses, Nurten et al. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 357-66, doi:10.19113/sdufbed.14005.
Vancouver (bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. J. Nat. Appl. Sci. 2017;21(2):357-66.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.