BibTex RIS Cite

Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well

Year 2017, Volume: 21 Issue: 2, 367 - 372, 17.06.2017

Abstract

The effects of a static electric field on the nonlinear optical rectification, second- and third-harmonic generation in a quantum well described by Morse potential are theoretically investigated. Analytical expressions for the optical coefficients due to intersubband optical transitions with an applied electric field are extracted from the compact-density matrix approach and iterative scheme. Numerical results presented for a typical GaAs quantum well reveal the feasibility of control of optical transitions between the size-quantized subbands. In addition, we have to emphasize the fact that the optical response of the system is remarkably sensitive to the electric field and structural range parameter.

References

  • [1] Mora-Ramos. M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen, I 2012. Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. J. Lumin., 132, 901.
  • [2] Yesilgul, U., Ungan. F., Sakiroglu, S., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen, I. 2014. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field. J. Lumin., 145, 379.
  • [3] Zhai, W. 2014. A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells. Physica B, 454, 50.
  • [4] Khordad, R. 2013. Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin., 134, 201.
  • [5] Sakiroglu, S., Ungan, F., Yesilgul, U., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen I. 2012. Nonlinear optical rectification and the second and third harmonic generation in Pöschl-Teller quantum well under the intense laser field. Phys. Lett. A, 376, 1875.
  • [6] Niculescu, E.C., Burileanu L.M. 2010 Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field. Eur. Phys. J. B, 74, 117.
  • [7] Karabulut, I., Duque, C.A. 2011. Nonlinear optical rectification and optical absorption in GaAs-Ga1xAlxAs double quantum wells under applied electric and magnetic fields. Physica E, 43, 1405.
  • [8] Martinez, V., Castano, C., Giraldo, A., Gonzalez, J.P., Restrepo, R.L., Morales, A.L., Duque, C.A. 2016. Morse potential as a semoconductor quantum wells profile. Revista EIA, 12(E3), 85-94 .
  • [9] Martínez-Orozco, J.C., Mora-Ramos, M.E., Duque, C.A. 2012. Nonlinear optical rectification and second and third harmonic generation in GaAs d FET systems under hydrostatic pressure. J. Lumin., 132, 449.
  • [10] Karabulut, I., ¸Safak, H., Tomak, M. 2005. Nonlinear optical rectification in asymmetrical semiparabolic quantum wells. Solid State Commun., 135, 735.
  • [11] Wang, R.Z., Guo, K.X., Liu, Z.L., Chen, B., Zheng, Y. B. 2009. Nonlinear optical rectification in asymmetric coupled quantum wells. Phys. Lett. A, 373, 795.
  • [12] Shao, S., Guo, K.X., Zhang, Z.H., Li, N., Peng, C. 2011. Third-harmonic generation in cylindrical quantum dots in a static magnetic field. Solid State Commun., 151, 289.
  • [13] Ahn, D., Chuang, S. L. 1987. Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quant. Electron., QE-23, 2196.
  • [14] Tsang, L., Ahn, D., Chuang, S. L. 1988. Electric field control of optical second-harmonic generation in a quantum well. Appl. Phys. Lett., 52, 697.
  • [15] Yıldırım, H., Tomak, M. 2006. Third-harmonic generation in a quantum well with adjustable asymmetry under an electric field. phys. stat. sol. (b), 243, 4057.
  • [16] Yıldırım, H., Tomak, M. 2006. Intensity-dependent refractive index of a Pöschl-Teller quantum well. J. Appl. Phys., 99, 093103.
  • [17] Wu, J., Guo, K., Liu, G. 2014. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields. Physica B, 446, 59.
  • [18] Mou, S., Guo, K., Xiao, B. 2014. Polaron effects on the linear and nonlinear intersubband optical absorption coefficients in quantum wells with asymmetrical semi-exponential potential. Superlatt. Microstr., 72, 72.
  • [19] Karimi, M.J., Keshavarz, A. 2012. Second harmonic generation in asymmetric double semi-parabolic quantum wells: Effects of electric and magnetic fields, hydrostatic pressure and temperature. Physica E, 44, 1900.
  • [20] Guo, A., Du, J. 2013. Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. Superlatt. Microstr., 64, 158.
  • [21] Niculescu, E.C., Eseanu, N. 2011. Interband absorption in square and semiparabolic near-surface quantum wells under intense laser field. Eur. Phys. J. B, 79, 313.
  • [22] Liu, G., Guo, K., Wu, Q. 2012. Linear and nonlinear intersubband optical absorption and refractive index change in asymmetrical semi-exponential quantum wells. Superlatt. Microstr., 52, 183.
  • [23] Aytekin, O., Turgut, S., Tomak, M. 2012. Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic fields. Physica E, 44, 1612.
  • [24] Wang, G.H., Guo, K.X., Guo, Q. 2003. Third-Order Nonlinear Optical Susceptibility of Special Asymmetric Quantum Wells. Commun. Theor. Phys., 39, 377.
  • [25] Sadowski, M.L., Potemski, M., Grynberg, M. (edt.) 2000. Optical properties of semiconductor nanostructures, NATO Science Series, p.237.
  • [26] Gurnick, M.K., DeTemple, T.A. 1983. Synthetic nonlinear semiconductors. IEEE J. Quant. Electron., QE-19, 791.
  • [27] Yu, F.M., Guo, K.X., Xie, H.J., Yu, Y.B. 2003. Intersubband optical absorption in Morse quantum well. Chinese J. Lumin., 23, 247.
  • [28] Yu, F.M., Guo, K.X., Wang, K.Q. 2005. Linear and Third-order Nonlinear Change in the Index of Refraction in Morse Quantum Well. Chinese J. Lumin., 26, 569.
  • [29] Yu, F.M., Wang, K.Q., Shen, C. W. 2010. Influence of Polaron Effects on the Optical Absorptions in Asymmetrical Quantum Wells. Chinese J. Lumin., 31, 467.
  • [30] Yu, F.M., Chen, H.P., Zhou, L.P. 2011. Polaron Effects on the Change of Refractive Index in Asymmetrical Quantum Wells. Chinese J. Physics, 49, 629.
  • [31] Sakiroglu S., Kasapoglu E., Restrepo R. L., Duque C. A., Sökmen I. 2017. Intense laser field-induced nonlinear optical properties of Morse quantum well. Phys. Status Solidi (B), 254, 1600457
  • [32] Ribeiro, F.J., Capaz, R. B., Koiller, B. 2002. Electricfield effects on the band-edge states of GaAs/AlAs coupled quantum wells. Brazilian J. Phys., 32, 318.
  • [33] Sahu, T., Palo, S., Sahoo, N. 2012. Electric field induced enhancement of multisubband electron mobility in strained GaAs/InGaAs coupled quantum well structures. Physica E, 46, 155.
  • [34] Morse, P.M. 1929. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev., 34, 57.
  • [35] Nieto, M.M., Simmons, Jr.L.M. 1979. Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys. Rev. A, 19, 438.
  • [36] Pak, N.K., Sökmen, ˙I. 1984. General new-time formalism in the path integral. Phys. Rev. A, 30, 1629.
  • [37] Pask, J.E., Klein, B.M., Sterne, P.A., Fong, C.Y. 2001. Finite-element methods in electronic-structure theory. Comp. Phys. Commun., 135, 1.
  • [38] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. 2005. The Finite Element Method: Its Basis and Fundamentals 6.th Edt. Elsevier Butterworth-Heinemann, Oxford, p.47.
  • [39] Vahdani, M.R.K., Rezaei, G. 2010. Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot. Phys. Lett. A, 374, 637.
  • [40] Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J. 2010. Intersubband optical absorption coefficient changes and refractive index changes in a two-dimensional quantum pseudodot system. Superlatt. Microstr., 48, 450.
  • [41] Boardman, A.D., Pavlov, L., Tanev, S. (edt.) 1998. Advanced Photonics with Second-Order Optically Nonlinear Processes. Kluwer Academic Publishers, Doldrecht, p.113.
Year 2017, Volume: 21 Issue: 2, 367 - 372, 17.06.2017

Abstract

References

  • [1] Mora-Ramos. M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen, I 2012. Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. J. Lumin., 132, 901.
  • [2] Yesilgul, U., Ungan. F., Sakiroglu, S., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen, I. 2014. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field. J. Lumin., 145, 379.
  • [3] Zhai, W. 2014. A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells. Physica B, 454, 50.
  • [4] Khordad, R. 2013. Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin., 134, 201.
  • [5] Sakiroglu, S., Ungan, F., Yesilgul, U., Mora-Ramos, M.E., Duque, C.A., Kasapoglu, E., Sari, H., Sökmen I. 2012. Nonlinear optical rectification and the second and third harmonic generation in Pöschl-Teller quantum well under the intense laser field. Phys. Lett. A, 376, 1875.
  • [6] Niculescu, E.C., Burileanu L.M. 2010 Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field. Eur. Phys. J. B, 74, 117.
  • [7] Karabulut, I., Duque, C.A. 2011. Nonlinear optical rectification and optical absorption in GaAs-Ga1xAlxAs double quantum wells under applied electric and magnetic fields. Physica E, 43, 1405.
  • [8] Martinez, V., Castano, C., Giraldo, A., Gonzalez, J.P., Restrepo, R.L., Morales, A.L., Duque, C.A. 2016. Morse potential as a semoconductor quantum wells profile. Revista EIA, 12(E3), 85-94 .
  • [9] Martínez-Orozco, J.C., Mora-Ramos, M.E., Duque, C.A. 2012. Nonlinear optical rectification and second and third harmonic generation in GaAs d FET systems under hydrostatic pressure. J. Lumin., 132, 449.
  • [10] Karabulut, I., ¸Safak, H., Tomak, M. 2005. Nonlinear optical rectification in asymmetrical semiparabolic quantum wells. Solid State Commun., 135, 735.
  • [11] Wang, R.Z., Guo, K.X., Liu, Z.L., Chen, B., Zheng, Y. B. 2009. Nonlinear optical rectification in asymmetric coupled quantum wells. Phys. Lett. A, 373, 795.
  • [12] Shao, S., Guo, K.X., Zhang, Z.H., Li, N., Peng, C. 2011. Third-harmonic generation in cylindrical quantum dots in a static magnetic field. Solid State Commun., 151, 289.
  • [13] Ahn, D., Chuang, S. L. 1987. Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quant. Electron., QE-23, 2196.
  • [14] Tsang, L., Ahn, D., Chuang, S. L. 1988. Electric field control of optical second-harmonic generation in a quantum well. Appl. Phys. Lett., 52, 697.
  • [15] Yıldırım, H., Tomak, M. 2006. Third-harmonic generation in a quantum well with adjustable asymmetry under an electric field. phys. stat. sol. (b), 243, 4057.
  • [16] Yıldırım, H., Tomak, M. 2006. Intensity-dependent refractive index of a Pöschl-Teller quantum well. J. Appl. Phys., 99, 093103.
  • [17] Wu, J., Guo, K., Liu, G. 2014. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields. Physica B, 446, 59.
  • [18] Mou, S., Guo, K., Xiao, B. 2014. Polaron effects on the linear and nonlinear intersubband optical absorption coefficients in quantum wells with asymmetrical semi-exponential potential. Superlatt. Microstr., 72, 72.
  • [19] Karimi, M.J., Keshavarz, A. 2012. Second harmonic generation in asymmetric double semi-parabolic quantum wells: Effects of electric and magnetic fields, hydrostatic pressure and temperature. Physica E, 44, 1900.
  • [20] Guo, A., Du, J. 2013. Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. Superlatt. Microstr., 64, 158.
  • [21] Niculescu, E.C., Eseanu, N. 2011. Interband absorption in square and semiparabolic near-surface quantum wells under intense laser field. Eur. Phys. J. B, 79, 313.
  • [22] Liu, G., Guo, K., Wu, Q. 2012. Linear and nonlinear intersubband optical absorption and refractive index change in asymmetrical semi-exponential quantum wells. Superlatt. Microstr., 52, 183.
  • [23] Aytekin, O., Turgut, S., Tomak, M. 2012. Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic fields. Physica E, 44, 1612.
  • [24] Wang, G.H., Guo, K.X., Guo, Q. 2003. Third-Order Nonlinear Optical Susceptibility of Special Asymmetric Quantum Wells. Commun. Theor. Phys., 39, 377.
  • [25] Sadowski, M.L., Potemski, M., Grynberg, M. (edt.) 2000. Optical properties of semiconductor nanostructures, NATO Science Series, p.237.
  • [26] Gurnick, M.K., DeTemple, T.A. 1983. Synthetic nonlinear semiconductors. IEEE J. Quant. Electron., QE-19, 791.
  • [27] Yu, F.M., Guo, K.X., Xie, H.J., Yu, Y.B. 2003. Intersubband optical absorption in Morse quantum well. Chinese J. Lumin., 23, 247.
  • [28] Yu, F.M., Guo, K.X., Wang, K.Q. 2005. Linear and Third-order Nonlinear Change in the Index of Refraction in Morse Quantum Well. Chinese J. Lumin., 26, 569.
  • [29] Yu, F.M., Wang, K.Q., Shen, C. W. 2010. Influence of Polaron Effects on the Optical Absorptions in Asymmetrical Quantum Wells. Chinese J. Lumin., 31, 467.
  • [30] Yu, F.M., Chen, H.P., Zhou, L.P. 2011. Polaron Effects on the Change of Refractive Index in Asymmetrical Quantum Wells. Chinese J. Physics, 49, 629.
  • [31] Sakiroglu S., Kasapoglu E., Restrepo R. L., Duque C. A., Sökmen I. 2017. Intense laser field-induced nonlinear optical properties of Morse quantum well. Phys. Status Solidi (B), 254, 1600457
  • [32] Ribeiro, F.J., Capaz, R. B., Koiller, B. 2002. Electricfield effects on the band-edge states of GaAs/AlAs coupled quantum wells. Brazilian J. Phys., 32, 318.
  • [33] Sahu, T., Palo, S., Sahoo, N. 2012. Electric field induced enhancement of multisubband electron mobility in strained GaAs/InGaAs coupled quantum well structures. Physica E, 46, 155.
  • [34] Morse, P.M. 1929. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev., 34, 57.
  • [35] Nieto, M.M., Simmons, Jr.L.M. 1979. Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys. Rev. A, 19, 438.
  • [36] Pak, N.K., Sökmen, ˙I. 1984. General new-time formalism in the path integral. Phys. Rev. A, 30, 1629.
  • [37] Pask, J.E., Klein, B.M., Sterne, P.A., Fong, C.Y. 2001. Finite-element methods in electronic-structure theory. Comp. Phys. Commun., 135, 1.
  • [38] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z. 2005. The Finite Element Method: Its Basis and Fundamentals 6.th Edt. Elsevier Butterworth-Heinemann, Oxford, p.47.
  • [39] Vahdani, M.R.K., Rezaei, G. 2010. Intersubband optical absorption coefficients and refractive index changes in a parabolic cylinder quantum dot. Phys. Lett. A, 374, 637.
  • [40] Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K., Karimi, M.J. 2010. Intersubband optical absorption coefficient changes and refractive index changes in a two-dimensional quantum pseudodot system. Superlatt. Microstr., 48, 450.
  • [41] Boardman, A.D., Pavlov, L., Tanev, S. (edt.) 1998. Advanced Photonics with Second-Order Optically Nonlinear Processes. Kluwer Academic Publishers, Doldrecht, p.113.
There are 41 citations in total.

Details

Journal Section Articles
Authors

Serpil Sakıroglu

Publication Date June 17, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Sakıroglu, S. (2017). Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 367-372. https://doi.org/10.19113/sdufbed.82549
AMA Sakıroglu S. Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well. J. Nat. Appl. Sci. August 2017;21(2):367-372. doi:10.19113/sdufbed.82549
Chicago Sakıroglu, Serpil. “Electric-Field-Induced Nonlinear Optical Rectification, Second- and Third-Harmonic Generation in Asymmetrical Quantum Well”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 367-72. https://doi.org/10.19113/sdufbed.82549.
EndNote Sakıroglu S (August 1, 2017) Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 367–372.
IEEE S. Sakıroglu, “Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 367–372, 2017, doi: 10.19113/sdufbed.82549.
ISNAD Sakıroglu, Serpil. “Electric-Field-Induced Nonlinear Optical Rectification, Second- and Third-Harmonic Generation in Asymmetrical Quantum Well”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 367-372. https://doi.org/10.19113/sdufbed.82549.
JAMA Sakıroglu S. Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well. J. Nat. Appl. Sci. 2017;21:367–372.
MLA Sakıroglu, Serpil. “Electric-Field-Induced Nonlinear Optical Rectification, Second- and Third-Harmonic Generation in Asymmetrical Quantum Well”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 367-72, doi:10.19113/sdufbed.82549.
Vancouver Sakıroglu S. Electric-field-induced Nonlinear Optical Rectification, Second- and Third-harmonic Generation in Asymmetrical Quantum Well. J. Nat. Appl. Sci. 2017;21(2):367-72.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.