BibTex RIS Cite

Cu<sub>4</sub>O<sub>4</sub> Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi

Year 2017, Volume: 21 Issue: 2, 652 - 658, 13.03.2017
https://doi.org/10.19113/sdufbed.19670

Abstract

Polimerik bakır (II) komplekslerinin tasarımı ve sentezi, moleküler biyoloji, manyetizma ve fotolüminesans alanlarındaki potansiyel uygulamalarından dolayı büyük ilgi uyandırmaktadır. Bu çalışmada, fotolüminesans özellikler gösteren {Cu4O4} kübik formda, C38H40Cl4Cu4N4O10(1) kompleksi rapor edilmektedir. Kompleks 1, solvotermal reaksiyon ile sentezlendi ve element analizi, FT-IR,  katı UV-Vis spektroskopisi ve tek kristal X ışını kırınımı ile karakterize edildi. Kristal yapı çalışmaları, kompleks 1 in kristal yapısındaki dört çekirdekli birimdeki bakır(II) iyonlarının bozulmuş kare piramit geometriye sahip olduğunu gösterdi. Kompleks 1 ve ligandı H2L’nin katı durumdaki fotolüminesans özellikleri ise görünür bölgede oda sıcaklığında incelendi. Kompleks 1 ve ligandı H2L UV ışık ile 349 nm de uyarıldığı zaman, kompleks 1 görünür bölgede 452 nm’de şiddetli mor emisyon gösterirken, ligandı H2L 504 nm’de yeşil emisyon göstermektedir. Bu umut verici fotolüminesans davranış, bu tip bileşikler için duyarlı moleküler cihazlar veya organik ışık yayan diyotlar (OLEDs) için olası uygulamalara kapı açmaktadır.

References

  • [1] Kahn, O. 1993. Molecular Magnetism, Wiley–VCH, New York.
  • [2] Buvaylo, E.A., Kokozay, V.N., Vassilyeva, O.Y., Skelton, B.W., Jezierska, J., Brunel, L.C. and Ozarowski, A. 2005. High–frequency, high–field EPR, magnetic susceptibility and X–ray studies on a ferromagnetic heterometallic complex of diethanolamine (H2L), [Cu4(NH3)4(HL)4][CdBr4]Br2.3dmf.H2O. Inorganic Chemistry, 44(2005), 206–216.
  • [3] Li, Y.M., Zhang, J.J., Fu, R.B., Xiang S.C, Sheng, T.L., Yuan, D.Q., Huang, X.H., Wu, X.T. 2006. Three new cubane–like transition metal complexes of di–2–pyridyl ketone in gem–diol form: Syntheses, crystal structures and properties. Polyhedron, 25(2006), 1618–1624.
  • [4] Liu, X., McAllister, J.A., de Miranda, M.P., Whitaker, B.J., Kilner, C.A., Thornton–Pett, M., Halcrow, M. 2002. Supramolecular templating of the double–cubane [{Cu–3(Hpz(tBu))(6)(mu(3)–Cl)(mu(3)–OH)(3)}(2)Cu]Cl–6(Hpz(tBu)=5–tert–butylpyrazole). Angewandte Chemie International Edition, 41(2002), 756–758.
  • [5] Gatteschi, D., Sessoli, R. 2004. Molecular nanomagnets: the first 10 years. Journal of Magnetism and Magnetic Materials, 272(2004), 1030–1036.
  • [6] Lintvedt, R.L., Lynch, W.E., and Zehetmair, J.K. 1990. Tetranuclear complexes of 1, 3, 5, 9, 11, 13–hexaketonates.2. Synthesis and electrochemistry of a series of heterotetranuclear complexes, bis {1,1'–(1,3–phenylene)bis[7–methyl–1,3,5octanetrionato (4–)]}hexakis (pyridine)bis[di–oxouranium(VI)dimetal(II),M2(UO2)2(MOB)2(py)6. Inorganic Chemistry, 29(1990), 3009–3013.
  • [7] Jung, B., Karlin, K.D., and Zuberbuhler, A.D. 1996 Formation and Interconversion of End–on and Side–on i–Peroxo–Dicopper(II) Complexes. Journal of the American Chemical Society, 118(1996), 3763 – 3764.
  • [8] Blackburn, N.J., Concannon, M., Shahiyan, S.K., Mabbs, F.E., and Collison, D. 1988. Active Site of Dopamine &Hydroxylase. Comparison of Enzyme Derivatives Containing Four and Eight Copper Atoms per Tetramer Using Potentiometry and EPR Spectroscopy. Biochemistry, 27(1988), 6001– 6008.
  • [9] Dimitrou, K., Brown, A.D., Concolino, T.E., Rheingold, A.L., Christou, G. 2001. Mixed–Valence, Tetranuclear Cobalt(III,IV) Complexes: Preparation and Properties of [Co4O4(O2CR)2(bpy)4]3+Salts. Chemical Communications, (2001), 1284–1285.
  • [10] Sletten, J., Sorensen, A., Julve, M., Journaux, Y. 1990. A Tetranuclear Hydroxo–Bridged Copper(II) Cluster of the Cubane Type. Preparation and Structural and Magnetic Characterization of Tetra kis[(2,2'–bipyridyl)(p–hydroxo) copper(II)] Hexafluorophosphate. Inorganic Chemistry, 29(1990), 5054–5058.
  • [11] Jammi, S., Saha, P., Sanyashi, S., Sakthivel, S., Punniyamurthy, T. 2008. Chiral binuclear copper (II) catalyzed nitroaldol reaction: scope and mechanism. Tetrahedron, 64(2008), 11724–11731.
  • [12] Hueso–Ureña, F., Moreno–Carretero, M.N., Quirós–Olozábal, M., Salas–Peregrín, J.M., Faure, R., and Alvarez de Cienfuegos–López, G. 1996.Spectral and magnetic properties, and biological activity of several coordination compounds of dinegative isoorotato and 2–thiosoorotato ligands. Crystal structure of the tetrameric complex [Cu4(isoorotato2–)4(NH34(H2O2]•4H2O. Inorganic Chimica Acta, 241(1996), 61 – 69.
  • [13] Maxim, C., Pasatoiu, T.D., Kravtsov V Ch. , Shova, S., Muryn, C.A., Winpenny, R.E.P., Tuna, F, Andruh, M.2008. Copper(II) and zinc(II) complexes with Schiff–base ligands derived from salicylaldehyde and 3–methoxysalicylaldehyde:Synthesis, crystal structures, magnetic and luminescence properties. Inorganic Chimica Acta, 361(2008), 3903–3911.
  • [14] Burkhardt, A., Spielberg, E.T., Görls, H., and Plass, W. 2008. Chiral Tetranuclear μ3–Alkoxo–Bridged Copper(II) Complex with 2 + 4 Cubane–Like Cu4O4 Core Framework and Ferromagnetic Ground State Inorganic Chemistry, 47(2008), 2485 – 2493.
  • [15] Wei, W., Lu Y., Chen W., and Chen, S. 2011. One–Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer–Sized Copper Clusters. American Chemical Society, 133(2011), 2060–2063.
  • [16] Ryu, C.K., Vitale M., Ford, P.C. 1993. Photoluminescence properties of the structurally analogous tetranuclear copper(I) clusters Cu4X4(dpmp)4 (X = I, Br, Cl; dpmp = 2–(diphenylmethyl)pyridine). Inorganic Chemistry, 32(1993), 869–874.
  • [17] Keefe, M.H., Benkstein, K.D., Hupp, J.T. 2000. Luminescent sensor molecules based on coordinated metals: a review of recent Developments. Coordination Chemistry Reviews, 205(2000), 201–228.
  • [18] Lo, K.K., Choi, A.W., Law W.H. 2012. Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes, Dalton Transactions, 41(2012), 6021–6047.
  • [19] Suhling, K., French, P.M.W., Phillips, D. 2005. Time–resolved fluorescence microscopy, Photochem Photobiol Science, 4(2005), 13–22.
  • [20] Svensson, F.R., Abrahamsson, M., Strömberg, N., Ewing, A.G., Lincoln, P. 2011. Ruthenium(II) Complex Enantiomers as Cellular Probes for Diastereomeric Interactions in Confocal and Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry Letters, 2(2011), 397–401.
  • [21] Zhou, X., Yu, B., Guo Y., Tang, X., Zhang, H., Liu, W. 2010. Both visual and fluorescent sensor for Zn2+ based on quinoline platform. Inorganic Chemistry, 49(2010), 4002–4007.
  • [22] Obali, A.Y., Ucan H.I. 2015. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies. Journal of Molecular Structure, 1081(2015), 74–78.
  • [23] Singh, A.K., Gupta, V.K., Gupta, B. 2007. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Analytica Chimica Acta 585 (2007) 171–178.
  • [24] Yang, Z. , She, M., Zhang, J., Chen, X., Huang, Y., Zhu, H., Liu, P., Li, J., Shi, Z. 2013. Highly sensitive and selective rhodamine Schiff base “off–on” chemosensors for Cu2+ imaging in living cells. Sensors and Actuators B: Chemical, 176(2013), 482–487.
  • [25] Gungor, E., Kara, H. 2015. A new tetranuclear distorted open–cubane coper(II) schiff base complex:Structural, spectral and magnetic characterizations. Journal of Structural Chemistry, 56(2015), 1646–1652.
  • [26] Gungor, E., Kara, H., Colacio, E., and J. A. Mota, 2014. Two Tetranuclear Copper(II) Complexes with Open Cubane–Like Cu4O4 Core Framework and Ferromagnetic Exchange Interactions between Copper(II) Ions: Structure, Magnetic Properties, and Density Functional Study. European Journal Inorganic Chemistry, (2014), 1552–1560.
  • [27] Puterova–Tokarova, Z., Mrazova, V., Kozisek, J., Valentova, J., Vranovicova, B., and Boca, R. 2014. Magnetostructural correlation in tetracopper(II) cubanes, Polyhedron, 70(2014), 52–58.
  • [28] Tercero, J., Ruiz, E., Alvarez, S., Rodriguez–Fortea, A., and Alemany, P. 2006. Density functional study of magnetostructural correlations in cubane complexes containing the Cu4O4 core, Journal of Materials Chemistry, 16(2006), 2729–2735.
  • [29] Chakraborty J., Thakurta S., Pilet G. , Luneau D., Mitra S. 2009. A novel tetra(µ3-phenoxo) bridged copper(II) Schiff base complex containing a Cu4O4 cubane core: Synthesis, structural aspects and magneto-structural correlations, Polyhedron 28(2009), 819–825.
  • [30] Canaj, A.B., Tzimopoulos, D.I., Philippidis A., Kostakis G. E., and Milios C.J. 2012. Employment of a New Tripodal Ligand for the Synthesis of Cobalt(II/III), Nickel(II), and Copper(II) Clusters: Magnetic, Optical, and Thermal Properties, Inorganic Chemistry, 51(2012), 10461−10470.
  • [31] Addison A.W., Rao T.N., Reedijk J., Van Rijn J., Verschoor G.C. 1984. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6 dithiaheptane]copper(II) perchlorate. Dalton Transactions (1984), 1349-1356.
  • [32] Hathaway, B.J., Wilkinson, G., Gillard, R.D., McCleverty, J.A. 1987. Eds. Comprehensive Coordination Chemistry, vol 5, Pergamon Press, Oxford, UK.
  • [33] Lu, J.W., Huang, Y.H., Lo, S., Wei, H.H. 2007. New µ–oxo–bridged tetranuclear Cu(II) complex with Schiff–base ligand: Synthesis, crystal structure and magnetic properties. Inorganic Chemistry Communications, 10(2007), 1210–1213.
  • [34] Xie, Y., Jiang, H., Sun–Chi Chan, A., Liu, Q., Xu, X., Du, C., Zhu, Y. 2002. Structural and magnetic properties of O–bridged tetranuclear and binuclear Cu(II) complexes. Inorganic Chimica Acta, 333(2002), 138–143.
  • [35] Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy. Amsterdam: Elsevier.
  • [36] You, Z.L., Zhu, H.L. 2004. Syntheses, Crystal Structures, and Antibacterial Activities of Four Schiff Base Complexes of Copper and Zinc. Z. Anorg. Allg. Chem., 630(2004), 2754–2760.
  • [37] Manjunatha, M.N., Dikundwar, A.G., Nagasundar, K.R. Zn(II), Cd(II) and Hg(II) complexes with 1–(p–methoxybenzyl)–2–(p–methoxyphenyl)benzimidazole: Syntheses, structures and luminescence. Polyhedron, 30 (2011), 1299–1304.
  • [38] Wu, G., Wang, X.F., Okamura, T., Sun, W.Y. Ueyama, N. Syntheses, Structures, and Photoluminescence Properties of Metal(II) Halide Complexes with Pyridine–Containing Flexible Tripodal Ligands. Inorganic Chemistry, 45(2006), 8523–8532.
  • [39] Surati, K.R., Thaker, B.T. 2010. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β–diketone with aromatic and aliphatic diamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(2010), 235–242.
  • [40] Feng, X., Feng, Y.Q., Chen, J.J., Ng, S.W., Wang, L.Y., Guo, J.Z. 2015. Ionothermal synthesis, crystal structure, topology and catalytic properties of heterometallic coordination polymers constructed from N–(phosphonomethyl) iminodiacetic acid. Dalton Transactions, 44(2015), 804–816.
  • [41] Chen, Y.N., Ge, Y.Y., Zhou, W., Ye, L.F., Gu, Z.G. Ma, G.Z., Li, W.S., Li, H., Cai Y.P. The first Mn–Zn heterometallic dinuclear compound based on Schiff base ligand N, N′–bis(salicylidene)–1,3–diaminopropane. Inorganic Chemistry Community, 14(2011), 1228–1238.
  • [42] Ji, Y.F., Wang, R., Ding, S., Du, C.F., Liu, Z.L. 2012. Synthesis, crystal structures and fluorescence studies of three new Zn(II) complexes with multidentate Schiff base ligands. Inorganic Chemistry Communications, 16(2012), 47–50.
Year 2017, Volume: 21 Issue: 2, 652 - 658, 13.03.2017
https://doi.org/10.19113/sdufbed.19670

Abstract

References

  • [1] Kahn, O. 1993. Molecular Magnetism, Wiley–VCH, New York.
  • [2] Buvaylo, E.A., Kokozay, V.N., Vassilyeva, O.Y., Skelton, B.W., Jezierska, J., Brunel, L.C. and Ozarowski, A. 2005. High–frequency, high–field EPR, magnetic susceptibility and X–ray studies on a ferromagnetic heterometallic complex of diethanolamine (H2L), [Cu4(NH3)4(HL)4][CdBr4]Br2.3dmf.H2O. Inorganic Chemistry, 44(2005), 206–216.
  • [3] Li, Y.M., Zhang, J.J., Fu, R.B., Xiang S.C, Sheng, T.L., Yuan, D.Q., Huang, X.H., Wu, X.T. 2006. Three new cubane–like transition metal complexes of di–2–pyridyl ketone in gem–diol form: Syntheses, crystal structures and properties. Polyhedron, 25(2006), 1618–1624.
  • [4] Liu, X., McAllister, J.A., de Miranda, M.P., Whitaker, B.J., Kilner, C.A., Thornton–Pett, M., Halcrow, M. 2002. Supramolecular templating of the double–cubane [{Cu–3(Hpz(tBu))(6)(mu(3)–Cl)(mu(3)–OH)(3)}(2)Cu]Cl–6(Hpz(tBu)=5–tert–butylpyrazole). Angewandte Chemie International Edition, 41(2002), 756–758.
  • [5] Gatteschi, D., Sessoli, R. 2004. Molecular nanomagnets: the first 10 years. Journal of Magnetism and Magnetic Materials, 272(2004), 1030–1036.
  • [6] Lintvedt, R.L., Lynch, W.E., and Zehetmair, J.K. 1990. Tetranuclear complexes of 1, 3, 5, 9, 11, 13–hexaketonates.2. Synthesis and electrochemistry of a series of heterotetranuclear complexes, bis {1,1'–(1,3–phenylene)bis[7–methyl–1,3,5octanetrionato (4–)]}hexakis (pyridine)bis[di–oxouranium(VI)dimetal(II),M2(UO2)2(MOB)2(py)6. Inorganic Chemistry, 29(1990), 3009–3013.
  • [7] Jung, B., Karlin, K.D., and Zuberbuhler, A.D. 1996 Formation and Interconversion of End–on and Side–on i–Peroxo–Dicopper(II) Complexes. Journal of the American Chemical Society, 118(1996), 3763 – 3764.
  • [8] Blackburn, N.J., Concannon, M., Shahiyan, S.K., Mabbs, F.E., and Collison, D. 1988. Active Site of Dopamine &Hydroxylase. Comparison of Enzyme Derivatives Containing Four and Eight Copper Atoms per Tetramer Using Potentiometry and EPR Spectroscopy. Biochemistry, 27(1988), 6001– 6008.
  • [9] Dimitrou, K., Brown, A.D., Concolino, T.E., Rheingold, A.L., Christou, G. 2001. Mixed–Valence, Tetranuclear Cobalt(III,IV) Complexes: Preparation and Properties of [Co4O4(O2CR)2(bpy)4]3+Salts. Chemical Communications, (2001), 1284–1285.
  • [10] Sletten, J., Sorensen, A., Julve, M., Journaux, Y. 1990. A Tetranuclear Hydroxo–Bridged Copper(II) Cluster of the Cubane Type. Preparation and Structural and Magnetic Characterization of Tetra kis[(2,2'–bipyridyl)(p–hydroxo) copper(II)] Hexafluorophosphate. Inorganic Chemistry, 29(1990), 5054–5058.
  • [11] Jammi, S., Saha, P., Sanyashi, S., Sakthivel, S., Punniyamurthy, T. 2008. Chiral binuclear copper (II) catalyzed nitroaldol reaction: scope and mechanism. Tetrahedron, 64(2008), 11724–11731.
  • [12] Hueso–Ureña, F., Moreno–Carretero, M.N., Quirós–Olozábal, M., Salas–Peregrín, J.M., Faure, R., and Alvarez de Cienfuegos–López, G. 1996.Spectral and magnetic properties, and biological activity of several coordination compounds of dinegative isoorotato and 2–thiosoorotato ligands. Crystal structure of the tetrameric complex [Cu4(isoorotato2–)4(NH34(H2O2]•4H2O. Inorganic Chimica Acta, 241(1996), 61 – 69.
  • [13] Maxim, C., Pasatoiu, T.D., Kravtsov V Ch. , Shova, S., Muryn, C.A., Winpenny, R.E.P., Tuna, F, Andruh, M.2008. Copper(II) and zinc(II) complexes with Schiff–base ligands derived from salicylaldehyde and 3–methoxysalicylaldehyde:Synthesis, crystal structures, magnetic and luminescence properties. Inorganic Chimica Acta, 361(2008), 3903–3911.
  • [14] Burkhardt, A., Spielberg, E.T., Görls, H., and Plass, W. 2008. Chiral Tetranuclear μ3–Alkoxo–Bridged Copper(II) Complex with 2 + 4 Cubane–Like Cu4O4 Core Framework and Ferromagnetic Ground State Inorganic Chemistry, 47(2008), 2485 – 2493.
  • [15] Wei, W., Lu Y., Chen W., and Chen, S. 2011. One–Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer–Sized Copper Clusters. American Chemical Society, 133(2011), 2060–2063.
  • [16] Ryu, C.K., Vitale M., Ford, P.C. 1993. Photoluminescence properties of the structurally analogous tetranuclear copper(I) clusters Cu4X4(dpmp)4 (X = I, Br, Cl; dpmp = 2–(diphenylmethyl)pyridine). Inorganic Chemistry, 32(1993), 869–874.
  • [17] Keefe, M.H., Benkstein, K.D., Hupp, J.T. 2000. Luminescent sensor molecules based on coordinated metals: a review of recent Developments. Coordination Chemistry Reviews, 205(2000), 201–228.
  • [18] Lo, K.K., Choi, A.W., Law W.H. 2012. Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes, Dalton Transactions, 41(2012), 6021–6047.
  • [19] Suhling, K., French, P.M.W., Phillips, D. 2005. Time–resolved fluorescence microscopy, Photochem Photobiol Science, 4(2005), 13–22.
  • [20] Svensson, F.R., Abrahamsson, M., Strömberg, N., Ewing, A.G., Lincoln, P. 2011. Ruthenium(II) Complex Enantiomers as Cellular Probes for Diastereomeric Interactions in Confocal and Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry Letters, 2(2011), 397–401.
  • [21] Zhou, X., Yu, B., Guo Y., Tang, X., Zhang, H., Liu, W. 2010. Both visual and fluorescent sensor for Zn2+ based on quinoline platform. Inorganic Chemistry, 49(2010), 4002–4007.
  • [22] Obali, A.Y., Ucan H.I. 2015. Novel dipodal Schiff base compounds: Synthesis, characterization and spectroscopic studies. Journal of Molecular Structure, 1081(2015), 74–78.
  • [23] Singh, A.K., Gupta, V.K., Gupta, B. 2007. Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Analytica Chimica Acta 585 (2007) 171–178.
  • [24] Yang, Z. , She, M., Zhang, J., Chen, X., Huang, Y., Zhu, H., Liu, P., Li, J., Shi, Z. 2013. Highly sensitive and selective rhodamine Schiff base “off–on” chemosensors for Cu2+ imaging in living cells. Sensors and Actuators B: Chemical, 176(2013), 482–487.
  • [25] Gungor, E., Kara, H. 2015. A new tetranuclear distorted open–cubane coper(II) schiff base complex:Structural, spectral and magnetic characterizations. Journal of Structural Chemistry, 56(2015), 1646–1652.
  • [26] Gungor, E., Kara, H., Colacio, E., and J. A. Mota, 2014. Two Tetranuclear Copper(II) Complexes with Open Cubane–Like Cu4O4 Core Framework and Ferromagnetic Exchange Interactions between Copper(II) Ions: Structure, Magnetic Properties, and Density Functional Study. European Journal Inorganic Chemistry, (2014), 1552–1560.
  • [27] Puterova–Tokarova, Z., Mrazova, V., Kozisek, J., Valentova, J., Vranovicova, B., and Boca, R. 2014. Magnetostructural correlation in tetracopper(II) cubanes, Polyhedron, 70(2014), 52–58.
  • [28] Tercero, J., Ruiz, E., Alvarez, S., Rodriguez–Fortea, A., and Alemany, P. 2006. Density functional study of magnetostructural correlations in cubane complexes containing the Cu4O4 core, Journal of Materials Chemistry, 16(2006), 2729–2735.
  • [29] Chakraborty J., Thakurta S., Pilet G. , Luneau D., Mitra S. 2009. A novel tetra(µ3-phenoxo) bridged copper(II) Schiff base complex containing a Cu4O4 cubane core: Synthesis, structural aspects and magneto-structural correlations, Polyhedron 28(2009), 819–825.
  • [30] Canaj, A.B., Tzimopoulos, D.I., Philippidis A., Kostakis G. E., and Milios C.J. 2012. Employment of a New Tripodal Ligand for the Synthesis of Cobalt(II/III), Nickel(II), and Copper(II) Clusters: Magnetic, Optical, and Thermal Properties, Inorganic Chemistry, 51(2012), 10461−10470.
  • [31] Addison A.W., Rao T.N., Reedijk J., Van Rijn J., Verschoor G.C. 1984. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6 dithiaheptane]copper(II) perchlorate. Dalton Transactions (1984), 1349-1356.
  • [32] Hathaway, B.J., Wilkinson, G., Gillard, R.D., McCleverty, J.A. 1987. Eds. Comprehensive Coordination Chemistry, vol 5, Pergamon Press, Oxford, UK.
  • [33] Lu, J.W., Huang, Y.H., Lo, S., Wei, H.H. 2007. New µ–oxo–bridged tetranuclear Cu(II) complex with Schiff–base ligand: Synthesis, crystal structure and magnetic properties. Inorganic Chemistry Communications, 10(2007), 1210–1213.
  • [34] Xie, Y., Jiang, H., Sun–Chi Chan, A., Liu, Q., Xu, X., Du, C., Zhu, Y. 2002. Structural and magnetic properties of O–bridged tetranuclear and binuclear Cu(II) complexes. Inorganic Chimica Acta, 333(2002), 138–143.
  • [35] Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy. Amsterdam: Elsevier.
  • [36] You, Z.L., Zhu, H.L. 2004. Syntheses, Crystal Structures, and Antibacterial Activities of Four Schiff Base Complexes of Copper and Zinc. Z. Anorg. Allg. Chem., 630(2004), 2754–2760.
  • [37] Manjunatha, M.N., Dikundwar, A.G., Nagasundar, K.R. Zn(II), Cd(II) and Hg(II) complexes with 1–(p–methoxybenzyl)–2–(p–methoxyphenyl)benzimidazole: Syntheses, structures and luminescence. Polyhedron, 30 (2011), 1299–1304.
  • [38] Wu, G., Wang, X.F., Okamura, T., Sun, W.Y. Ueyama, N. Syntheses, Structures, and Photoluminescence Properties of Metal(II) Halide Complexes with Pyridine–Containing Flexible Tripodal Ligands. Inorganic Chemistry, 45(2006), 8523–8532.
  • [39] Surati, K.R., Thaker, B.T. 2010. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β–diketone with aromatic and aliphatic diamine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(2010), 235–242.
  • [40] Feng, X., Feng, Y.Q., Chen, J.J., Ng, S.W., Wang, L.Y., Guo, J.Z. 2015. Ionothermal synthesis, crystal structure, topology and catalytic properties of heterometallic coordination polymers constructed from N–(phosphonomethyl) iminodiacetic acid. Dalton Transactions, 44(2015), 804–816.
  • [41] Chen, Y.N., Ge, Y.Y., Zhou, W., Ye, L.F., Gu, Z.G. Ma, G.Z., Li, W.S., Li, H., Cai Y.P. The first Mn–Zn heterometallic dinuclear compound based on Schiff base ligand N, N′–bis(salicylidene)–1,3–diaminopropane. Inorganic Chemistry Community, 14(2011), 1228–1238.
  • [42] Ji, Y.F., Wang, R., Ding, S., Du, C.F., Liu, Z.L. 2012. Synthesis, crystal structures and fluorescence studies of three new Zn(II) complexes with multidentate Schiff base ligands. Inorganic Chemistry Communications, 16(2012), 47–50.
There are 42 citations in total.

Details

Journal Section Articles
Authors

Elif Güngör

Publication Date March 13, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Güngör, E. (2017). Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 652-658. https://doi.org/10.19113/sdufbed.19670
AMA Güngör E. Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. August 2017;21(2):652-658. doi:10.19113/sdufbed.19670
Chicago Güngör, Elif. “Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal Ve Fotolüminesans Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21, no. 2 (August 2017): 652-58. https://doi.org/10.19113/sdufbed.19670.
EndNote Güngör E (August 1, 2017) Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 652–658.
IEEE E. Güngör, “Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi”, J. Nat. Appl. Sci., vol. 21, no. 2, pp. 652–658, 2017, doi: 10.19113/sdufbed.19670.
ISNAD Güngör, Elif. “Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal Ve Fotolüminesans Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (August 2017), 652-658. https://doi.org/10.19113/sdufbed.19670.
JAMA Güngör E. Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. 2017;21:652–658.
MLA Güngör, Elif. “Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal Ve Fotolüminesans Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 2, 2017, pp. 652-8, doi:10.19113/sdufbed.19670.
Vancouver Güngör E. Cu4O4 Kübik Formdaki Bakır (II) Kompleksinin Yapısal ve Fotolüminesans Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. 2017;21(2):652-8.

Cited By

Yeni Eu(III) kompleksinin sentezlenmesi ve fotofiziksel özellikleri
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Mustafa Burak COBAN
https://doi.org/10.25092/baunfbed.363733

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.