Research Article
BibTex RIS Cite

Tetrahidrofuran ve Dimetil Sülfoksitin Vanadyum Redoks Bataryadaki Pozitif Elektrolit Üzerine Olan Etkilerinin Araştırılması

Year 2018, Volume: 22 Issue: 3, 1114 - 1120, 20.09.2018
https://doi.org/10.19113/sdufenbed.433125

Abstract

Bu
çalışmada, tetrahidrofuran ve dimetil sülfoksitin vanadyum redoks bataryanın
pozitif elektrolitinin elektrokimyasal davranışına olan etkilerinin
karşılaştırılmalı bir çalışması yapılmıştır. Bu kapsamda, katkı maddesi, V(IV)
ve sülfürik asit içeren elektrolit çözeltilerinin karakterizasyonu için dönüşümlü
voltametri ve elektrokimyasal empedands spektroskopisi kullanılmıştır. Piklerin
akım ve kapasiteleri voltamogramlardan elde edilmiştir. Redoks reaksiyonu
tetrahidrofuran içeren pozitif elektrolit çözeltisinde difüzyonken ile
kontrollü gerçekleşmişken, dimetil sulfoksit içeren çözeltide
difüzyon+adsorbsiyon ile kontrollü olarak gerçekleşmiştir. Elektrokimyasal
impedimetrik analizlerde ise direnç değerleri incelenmiştir. Voltametrik
analizlerde kullanılan kalem ucu grafit elektrotun yüzey karakterizasyonu taramalı
elektron mikroskobu analizleri ile yapılmıştır.

References

  • [1] Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy. 41 (2016) 20914–20927.
  • [2] AlRafea, K., Fowler, M., Elkamel, A., Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrogen Energy. 41 (2016) 16718–16728.
  • [3] Oncel, S.S. Green energy engineering: Opening a green way for the future. J. Clean. Prod. 142 (2017) 3095–3100.
  • [4] Poizot, P., Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4 (2011) 2003-2019.
  • [5] Larcher, D., Tarascon J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2014) 19–29.
  • [6] Skyllas-Kazacos, M., McCann, J.F. Chapter 10 – Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage, in: Adv. Batter. Mediu. Large-Scale Energy Storage, Woodhead Publishing. 2015: pp. 329–386.
  • [7] Li, M.J., Zhao, W., Chen, X., Tao, W.Q. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy, Appl. Therm. Eng. 114 (2017) 802–814.
  • [8] Skyllas-Kazacos, M., New All-Vanadium Redox Flow Cell, J. Electrochem. Soc. 133 (1986) 1057-1058.
  • [9] M. Skyllas-Kazacos, M. Rychick, R. Robins, All-vanadium redox battery, Pat. US 4786567. (1988).
  • [10] G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: A review of technological, Financial and policy aspects, Int. J. Energy Res. 36 (2012) 1105–1120.
  • [11] C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H. young Jung, J.H. Yang, H.T. Kim, A review of vanadium electrolytes for vanadium redox flow batteries, Renew. Sustain. Energy Rev. 69 (2017) 263–274.
  • [12] M. Gençten, H. Gürsu, Y. Şahin, Electrochemical investigation of the effects of V(V) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery, Int. J. Hydrogen Energy. 41 (2016) 9868–9875.
  • [13] M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery—A Review, ChemSusChem. 9 (2016) 1521–1543.
  • [14] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta. 101 (2013) 27–40.
  • [15] H. Gürsu, M. Gençten, Y. Şahin, One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries, Electrochim. Acta. 243 (2017) 239–249.
  • [16] M. Gencten, H. Gursu, Y. Sahin, Anti-precipitation effects of TiO2 and TiOSO4 on positive electrolyte of vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25608–25618.
  • [17] M. Skyllas-Kazacos, Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery, Electrochem. Solid-State Lett. 2 (1999) 121-122.
  • [18] X. Wu, S. Liu, N. Wang, S. Peng, Z. He, Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery, Electrochim. Acta. 78 (2012) 475–482.
  • [19] S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta. 56 (2011) 5483–5487.
  • [20] S. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, Stability of positive electrolyte containing trishydroxymethyl aminomethane additive for vanadium redox flow battery, Int. J. Electrochem. Sci. 7 (2012) 4388–4396.
  • [21] Z. He, L. Chen, Y. He, C. Chen, Y. Jiang, Z. He, S. Liu, Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries, Ionics (Kiel). 19 (2013) 1915–1920.
  • [22] S.K. Park, J. Shim, J.H. Yang, C.S. Jin, B.S. Lee, Y.S. Lee, K.H. Shin, J.D. Jeon, Effect of inorganic additive sodium pyrophosphate tetrabasic on positive electrolytes for a vanadium redox flow battery, Electrochim. Acta. 121 (2014) 321–327.
  • [23] T. Herr, J. Noack, P. Fischer, J. Tübke, 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries, Electrochim. Acta. 113 (2013) 127–133.
  • [24] A.A. Shinkle, T.J. Pomaville, A.E.S. Sleightholme, L.T. Thompson, C.W. Monroe, Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries, J. Power Sources. 248 (2014) 1299–1305.
  • [25] M. Gencten K.B. Dönmez, Y. Sahin, A novel gel electrolyte for valve-regulated lead acid battery, 18 (2017) 146–160.
  • [26] M. Gençten, K.B. Dönmez, Y. Şahin, Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries, 17 (2016) 882–894.
  • [27] H. Gursu, M. Gençten, Novel chlorine doped graphene electrodes for positive electrodes of a vanadium redox flow battery, (2018) doi:10.1002/er.4083.
  • [28] H. Gursu, M. Gencten, Y. Sahin, Preparation of Sulphur-Doped Graphene-Based Electrodes by Cyclic Voltammetry : A Potential Application for Vanadium Redox Flow Battery, Int. J. Electrochem. Sci. 13 (2018) 875–885.
  • [29] M. Gencten, H. Gursu, Y. Sahin, Effect of α- and γ-alumina on the precipitation of positive electrolyte in vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25598-25607.
  • [30] F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery, Electrochim. Acta. 60 (2012) 334–338.

Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery

Year 2018, Volume: 22 Issue: 3, 1114 - 1120, 20.09.2018
https://doi.org/10.19113/sdufenbed.433125

Abstract

In
this work, a comparative study was done to determine the effects of
tetrahydrofuran and dimethyl sulfoxide on the electrochemical behaviors of a
vanadium redox flow battery’s (VRFB’s) positive electrolyte. In this concept,
cyclic voltammetry and electrochemical impedance spectroscopy were used for the
characterization of electrolytes consisting of additives, V(IV) and sulfuric
acid. Currents and capacities of peaks were determined in cyclic voltammograms.
The redox reaction were controlled by diffusion and diffusion+adsorption in
tetrahydrofuran and dimethyl sulfoxide including positive electrolyte solutions
of VRFB, respectively. Resistance values were investigated in electrochemical
impedimetric analysis. The morphological characterization of the pencil
graphite electrodes used in cyclic voltammetric analysis, were done by scanning
electron microscopic analysis.

References

  • [1] Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy. 41 (2016) 20914–20927.
  • [2] AlRafea, K., Fowler, M., Elkamel, A., Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrogen Energy. 41 (2016) 16718–16728.
  • [3] Oncel, S.S. Green energy engineering: Opening a green way for the future. J. Clean. Prod. 142 (2017) 3095–3100.
  • [4] Poizot, P., Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4 (2011) 2003-2019.
  • [5] Larcher, D., Tarascon J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2014) 19–29.
  • [6] Skyllas-Kazacos, M., McCann, J.F. Chapter 10 – Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage, in: Adv. Batter. Mediu. Large-Scale Energy Storage, Woodhead Publishing. 2015: pp. 329–386.
  • [7] Li, M.J., Zhao, W., Chen, X., Tao, W.Q. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy, Appl. Therm. Eng. 114 (2017) 802–814.
  • [8] Skyllas-Kazacos, M., New All-Vanadium Redox Flow Cell, J. Electrochem. Soc. 133 (1986) 1057-1058.
  • [9] M. Skyllas-Kazacos, M. Rychick, R. Robins, All-vanadium redox battery, Pat. US 4786567. (1988).
  • [10] G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: A review of technological, Financial and policy aspects, Int. J. Energy Res. 36 (2012) 1105–1120.
  • [11] C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H. young Jung, J.H. Yang, H.T. Kim, A review of vanadium electrolytes for vanadium redox flow batteries, Renew. Sustain. Energy Rev. 69 (2017) 263–274.
  • [12] M. Gençten, H. Gürsu, Y. Şahin, Electrochemical investigation of the effects of V(V) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery, Int. J. Hydrogen Energy. 41 (2016) 9868–9875.
  • [13] M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery—A Review, ChemSusChem. 9 (2016) 1521–1543.
  • [14] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta. 101 (2013) 27–40.
  • [15] H. Gürsu, M. Gençten, Y. Şahin, One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries, Electrochim. Acta. 243 (2017) 239–249.
  • [16] M. Gencten, H. Gursu, Y. Sahin, Anti-precipitation effects of TiO2 and TiOSO4 on positive electrolyte of vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25608–25618.
  • [17] M. Skyllas-Kazacos, Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery, Electrochem. Solid-State Lett. 2 (1999) 121-122.
  • [18] X. Wu, S. Liu, N. Wang, S. Peng, Z. He, Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery, Electrochim. Acta. 78 (2012) 475–482.
  • [19] S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta. 56 (2011) 5483–5487.
  • [20] S. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, Stability of positive electrolyte containing trishydroxymethyl aminomethane additive for vanadium redox flow battery, Int. J. Electrochem. Sci. 7 (2012) 4388–4396.
  • [21] Z. He, L. Chen, Y. He, C. Chen, Y. Jiang, Z. He, S. Liu, Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries, Ionics (Kiel). 19 (2013) 1915–1920.
  • [22] S.K. Park, J. Shim, J.H. Yang, C.S. Jin, B.S. Lee, Y.S. Lee, K.H. Shin, J.D. Jeon, Effect of inorganic additive sodium pyrophosphate tetrabasic on positive electrolytes for a vanadium redox flow battery, Electrochim. Acta. 121 (2014) 321–327.
  • [23] T. Herr, J. Noack, P. Fischer, J. Tübke, 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries, Electrochim. Acta. 113 (2013) 127–133.
  • [24] A.A. Shinkle, T.J. Pomaville, A.E.S. Sleightholme, L.T. Thompson, C.W. Monroe, Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries, J. Power Sources. 248 (2014) 1299–1305.
  • [25] M. Gencten K.B. Dönmez, Y. Sahin, A novel gel electrolyte for valve-regulated lead acid battery, 18 (2017) 146–160.
  • [26] M. Gençten, K.B. Dönmez, Y. Şahin, Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries, 17 (2016) 882–894.
  • [27] H. Gursu, M. Gençten, Novel chlorine doped graphene electrodes for positive electrodes of a vanadium redox flow battery, (2018) doi:10.1002/er.4083.
  • [28] H. Gursu, M. Gencten, Y. Sahin, Preparation of Sulphur-Doped Graphene-Based Electrodes by Cyclic Voltammetry : A Potential Application for Vanadium Redox Flow Battery, Int. J. Electrochem. Sci. 13 (2018) 875–885.
  • [29] M. Gencten, H. Gursu, Y. Sahin, Effect of α- and γ-alumina on the precipitation of positive electrolyte in vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25598-25607.
  • [30] F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery, Electrochim. Acta. 60 (2012) 334–338.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Metin Gençten

Publication Date September 20, 2018
Published in Issue Year 2018 Volume: 22 Issue: 3

Cite

APA Gençten, M. (2018). Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1114-1120. https://doi.org/10.19113/sdufenbed.433125
AMA Gençten M. Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery. J. Nat. Appl. Sci. September 2018;22(3):1114-1120. doi:10.19113/sdufenbed.433125
Chicago Gençten, Metin. “Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 3 (September 2018): 1114-20. https://doi.org/10.19113/sdufenbed.433125.
EndNote Gençten M (September 1, 2018) Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1114–1120.
IEEE M. Gençten, “Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery”, J. Nat. Appl. Sci., vol. 22, no. 3, pp. 1114–1120, 2018, doi: 10.19113/sdufenbed.433125.
ISNAD Gençten, Metin. “Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (September 2018), 1114-1120. https://doi.org/10.19113/sdufenbed.433125.
JAMA Gençten M. Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery. J. Nat. Appl. Sci. 2018;22:1114–1120.
MLA Gençten, Metin. “Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 3, 2018, pp. 1114-20, doi:10.19113/sdufenbed.433125.
Vancouver Gençten M. Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Battery. J. Nat. Appl. Sci. 2018;22(3):1114-20.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.