Bu çalışmada
$A =\alpha^{(0)}+\alpha ^{(1)}\phi +\alpha^{(2)}\overline{\phi}$,
$B =\beta ^{(0)}+\beta ^{(1)}\phi +\beta ^{(2)}\overline{\phi}$,
lineer katsayılara sahip olan
$ \frac{\partial w}{\partial \bar{\phi}}=Aw+B\overline{w}$
denkleminin çözümleri araştırıldı. Bu çözümler kullanılarak $w=K^{(0)}+\phi K^{(1)} +\bar{\phi} K^{(2)}$ formuna sahip kompleks matris değerli fonksiyonlara yaklaşıldı. Burada $\phi$, $Q$-holomorf fonksiyonlar için bir doğurucu çözümdür.
Genelleştirilmiş Beltrami sistemleri Genelleştirilmiş Q-holomorf fonksiyonlar Weierstrass-Stone yaklaşım teoremi
In this work, we seek the solutions of the equation
$\frac{\partial w}{\partial \bar{\phi}}=Aw+B\overline{w}$
with linear coefficients
$A=\alpha^{(0)}+\alpha ^{(1)}\phi +\alpha^{(2)}\overline{\phi}$,
$B=\beta ^{(0)}+\beta ^{(1)}\phi +\beta ^{(2)}\overline{\phi}$,
such that using this solutions we approximated to complex matrix valued function which possess the form $w=K^{(0)}+\phi K^{(1)} +\bar{\phi} K^{(2)}$. Here $\phi$ is a generating solution for $Q$-holomorphic functions.
Generalized Beltrami systems Generalized Q-holomorphic functions Weierstrass-Stone approximation
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | September 20, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: 3 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.