In this research, generalized and extended generalized $\phi $-recurrent Sasakian Finsler structures on horizontal and vertical tangent bundles and their various geometric properties are studied.
[1] Bandyopadhyay M., On generalized f-recurrent Sasakian manifolds, Mathematica Pannonica. 22(1) (2011), 19–23.
[2] Basari A. and Murathan C. , On generalized f- recurrent Kenmotsu manifolds, Fen Derg. 3(1) (2008), 91–97.
[3] Besse A. L., Einstein manifolds, Springer Science & Business Media, 2007.
[4] Chaubey S. K. and Prasad C. S., On generalized f- Recurrent Kenmotsu Manifolds, TWMS Journal of Applied and Engineering Mathematics. 5(1) (2015), 1–9.
[5] Dahl M., A brief introduction to Finsler geometry, 2006.
[6] De U. C., Shaikh A.A. and Biswas S., On f-recurrent Sasakian manifolds, Novi Sad J. Math. 33(2) 01 (2015), 43–48.
[7] Debnath D. and Bhattacharyya A., On generalized f- recurrent trans-Sasakian manifolds, Acta Universitatis Apulensis. (36) (2013), 253–266.
[8] Dubey R. S. D., Generalized recurrent spaces, Indian J. Pure Appl. Math. 10(12) (1979), 1508–1513.
[9] Jaiswal, J. P. and Yadav, A. S., On extended generalized f-recurent trans-Sasakian manifolds, Acta Mathematica Universitatis Comenianae, 86(2) (2017), 271–277.
[10] Mo X., An introduction to Finsler geometry, World Scientific, 2006.
[11] Prakasha D. G., On extended generalized f-recurrent Sasakian manifolds, Journal of the Egyptian Mathematical Society. 21 (2013), 25–31.
[12] Prasad K., Quarter symmetric metric Finsler connections on Kenmotsu and P-Kenmotsu vector bundles, Intern. Math. Forum. 3(18) (2008), 847–855.
[13] Ruse H. S., Three-dimensional spaces of recurrent curvature, Proceedings of the London Mathematical Society. 2(1) (1948), 438–446.
[14] Shaikh A. A., Prakasha D.G. and Ahmad H., On generalized f-recurrent LP-Sasakian manifolds, Journal of the Egyptian Mathematical Society. 23(1) (2015), 161–166.
[15] Singh J. P., On generalized f-recurrent and generalized concircularly f-recurrent P-Sasakian manifolds, Novi Sad J. Math. 44(1) (2014), 153–163.
[16] Sinha B. B. and Yadav R.K., Almost contact semi symmetric metric Finsler connections on vector bundle, Indian J. pure appl. Math. 22(1) (1991), 29–39.
[1] Bandyopadhyay M., On generalized f-recurrent Sasakian manifolds, Mathematica Pannonica. 22(1) (2011), 19–23.
[2] Basari A. and Murathan C. , On generalized f- recurrent Kenmotsu manifolds, Fen Derg. 3(1) (2008), 91–97.
[3] Besse A. L., Einstein manifolds, Springer Science & Business Media, 2007.
[4] Chaubey S. K. and Prasad C. S., On generalized f- Recurrent Kenmotsu Manifolds, TWMS Journal of Applied and Engineering Mathematics. 5(1) (2015), 1–9.
[5] Dahl M., A brief introduction to Finsler geometry, 2006.
[6] De U. C., Shaikh A.A. and Biswas S., On f-recurrent Sasakian manifolds, Novi Sad J. Math. 33(2) 01 (2015), 43–48.
[7] Debnath D. and Bhattacharyya A., On generalized f- recurrent trans-Sasakian manifolds, Acta Universitatis Apulensis. (36) (2013), 253–266.
[8] Dubey R. S. D., Generalized recurrent spaces, Indian J. Pure Appl. Math. 10(12) (1979), 1508–1513.
[9] Jaiswal, J. P. and Yadav, A. S., On extended generalized f-recurent trans-Sasakian manifolds, Acta Mathematica Universitatis Comenianae, 86(2) (2017), 271–277.
[10] Mo X., An introduction to Finsler geometry, World Scientific, 2006.
[11] Prakasha D. G., On extended generalized f-recurrent Sasakian manifolds, Journal of the Egyptian Mathematical Society. 21 (2013), 25–31.
[12] Prasad K., Quarter symmetric metric Finsler connections on Kenmotsu and P-Kenmotsu vector bundles, Intern. Math. Forum. 3(18) (2008), 847–855.
[13] Ruse H. S., Three-dimensional spaces of recurrent curvature, Proceedings of the London Mathematical Society. 2(1) (1948), 438–446.
[14] Shaikh A. A., Prakasha D.G. and Ahmad H., On generalized f-recurrent LP-Sasakian manifolds, Journal of the Egyptian Mathematical Society. 23(1) (2015), 161–166.
[15] Singh J. P., On generalized f-recurrent and generalized concircularly f-recurrent P-Sasakian manifolds, Novi Sad J. Math. 44(1) (2014), 153–163.
[16] Sinha B. B. and Yadav R.K., Almost contact semi symmetric metric Finsler connections on vector bundle, Indian J. pure appl. Math. 22(1) (1991), 29–39.
Çalışkan, N., & Sağlamer, A. F. (2018). On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 493-497.
AMA
Çalışkan N, Sağlamer AF. On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures. J. Nat. Appl. Sci. October 2018;22:493-497.
Chicago
Çalışkan, Nesrin, and Ayşe Funda Sağlamer. “On Generalized and Extended Generalized $\phi$-Recurrent Sasakian Finsler Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, October (October 2018): 493-97.
EndNote
Çalışkan N, Sağlamer AF (October 1, 2018) On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 493–497.
IEEE
N. Çalışkan and A. F. Sağlamer, “On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures”, J. Nat. Appl. Sci., vol. 22, pp. 493–497, 2018.
ISNAD
Çalışkan, Nesrin - Sağlamer, Ayşe Funda. “On Generalized and Extended Generalized $\phi$-Recurrent Sasakian Finsler Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (October 2018), 493-497.
JAMA
Çalışkan N, Sağlamer AF. On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures. J. Nat. Appl. Sci. 2018;22:493–497.
MLA
Çalışkan, Nesrin and Ayşe Funda Sağlamer. “On Generalized and Extended Generalized $\phi$-Recurrent Sasakian Finsler Structures”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, 2018, pp. 493-7.
Vancouver
Çalışkan N, Sağlamer AF. On Generalized and Extended Generalized $\phi$-recurrent Sasakian Finsler Structures. J. Nat. Appl. Sci. 2018;22:493-7.
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.