Epilepsi en sık karşılaşılan nörolojik hastalıklardan biri olup beyinde bir grup nöronun anormal aktivitesi sonucu oluşmaktadır. Epilepsi genellikle elektroansefalografi (EEG) sinyalleri kullanılarak teşhis edilmektedir. Bu sebeple, EEG işaretlerinden etkin özniteliklerin çıkarılması doğru sınıflandırma için önemli bir basamaktır. Bu çalışmada epileptik EEG işaretlerinden kararlı öznitelikler çıkaracak motif algoritması isimli yeni bir yaklaşım önerilmiştir. Bu yaklaşım, EEG işaretlerinde belirli büyüklükteki bir pencere içine giren değerlerin birbirleri ile olan büyüklük/küçüklük ilişkisine bağımlıdır. Pencere içindeki değerlerin birbirlerine göre oluşturdukları görünüm bir motif olarak ele alınmaktadır. İşaret üzerindeki bu motiflerin frekansları öznitelik vektörü olarak kullanılmıştır. Motif sayısı sinyal üzerinde tanımlanan pencere boyutuna bağlıdır. Motif öznitelikleri elde edildikten sonra sınıflama aşamasında RF, YSA, SVM gibi farklı sınıflandırma algoritmaları kullanılmıştır. Önerilen yöntemin başarısını test etmek için farklı durumlarda (nöbet öncesi, nöbet sonrası, gözler açık ve gözler kapalı vb.) kayıt altına alınmış EEG işaretlerinin birleşimlerinden elde edilen setler kullanılmış ve yüksek sınıflandırma başarıları elde edilmiştir.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | October 5, 2018 |
Published in Issue | Year 2018 Volume: 22 Issue: Special |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.