Research Article
BibTex RIS Cite

Esnek Simetrik Olmayan Metrik Uzaylarda Kapalı Büzülmeler yoluyla Ortak Sabit Nokta Teoremleri

Year 2019, Volume: 23 Issue: 1, 1 - 5, 01.04.2019
https://doi.org/10.19113/sdufenbed.439699

Abstract

Bu araştırma makalesinde, esnek simetrik olmayan metrik uzaylarda kapalı büzülmeler

içeren bazı ortak sabit nokta sonuçları sunulmuştur. Ayrıca dönüşümlerin ortak sabit nokta

probleminin well-posedness özelliği tanımlanmış ve bununla ilgili bir teorem verilmiştir.

Son olarak, esnek G-metrik uzaylardaki bazı sabit nokta sonuçlarının, bu makalede verilen

ana teoremlerin ivedi sonuçları olduğu gösterilmiştir.

References

  • [1] Bilgili Gungor, N. 2018. Fixed point results from softmetric spaces and soft quasi metric spaces to soft Gmetricspaces, TWMS Journal of Applied and EngineeringMathematics (in review).
  • [2] Das, S., Samanta, S.K. 2013. On soft metric spaces, J.Fuzzy Math. 21 (3) (2013) 707-734.
  • [3] Guler, A. C., Yildirim, E. D., Ozbakir, O. B.2016. AFixed point theorem on soft G-metric spaces, J. NonlinearSci. Appl. 9 (2016) 885-894.
  • [4] Abbas, M., Rhoades,B. E.2009. Common Fixed PointResults for Noncommuting mappings without continuityin generalized metric spaces, Appl. Math. andComputation 215 (2009), 262-269.1, 4.5.
  • [5] Popa, V., Patriciu, A. M.2012. A General Fixed PointTheorem for Mappings Satisfying An f-Implicit Relationin Complete G-Metric Spaces, Gazi UniversityJournal of Science, 25(2): 403-408 (2012).
  • [6] Ciric, L. B. 1974. A generalization of Banach’s contractionprinciple, Proceedings of the American Mathematicalsociety (1974) 45(2), 267-273.
  • [7] De Blasi, F. S., Myjak, T.1989. Sur la porosité lescontraction sans point fixe ,C.R.Acad. Sci. Paris,308(1989), 51-54 .
  • [8] Lahiri, B. K., Dos,D.2005. Well-posedness and porosityof a certain class of operators, Demonstratio Math.,1(2005), 170-176.
  • [9] Reich, S., Zaslawski, A. J.2001. Well-posedness offixed point problems, Far East J. Math. Sci.(FJMS),(2001), 393-401.

Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces

Year 2019, Volume: 23 Issue: 1, 1 - 5, 01.04.2019
https://doi.org/10.19113/sdufenbed.439699

Abstract

Some common fixed point results involving implicit contractions on soft quasi metric

spaces are presented in this research article. Also, the well posedness property of the

common fixed point problem of mappings is defined and a theorem is given about it.

Finally, some fixed point results on soft G-metric spaces are indicated to be urgent

outcomes of main theorems are given in this article .

References

  • [1] Bilgili Gungor, N. 2018. Fixed point results from softmetric spaces and soft quasi metric spaces to soft Gmetricspaces, TWMS Journal of Applied and EngineeringMathematics (in review).
  • [2] Das, S., Samanta, S.K. 2013. On soft metric spaces, J.Fuzzy Math. 21 (3) (2013) 707-734.
  • [3] Guler, A. C., Yildirim, E. D., Ozbakir, O. B.2016. AFixed point theorem on soft G-metric spaces, J. NonlinearSci. Appl. 9 (2016) 885-894.
  • [4] Abbas, M., Rhoades,B. E.2009. Common Fixed PointResults for Noncommuting mappings without continuityin generalized metric spaces, Appl. Math. andComputation 215 (2009), 262-269.1, 4.5.
  • [5] Popa, V., Patriciu, A. M.2012. A General Fixed PointTheorem for Mappings Satisfying An f-Implicit Relationin Complete G-Metric Spaces, Gazi UniversityJournal of Science, 25(2): 403-408 (2012).
  • [6] Ciric, L. B. 1974. A generalization of Banach’s contractionprinciple, Proceedings of the American Mathematicalsociety (1974) 45(2), 267-273.
  • [7] De Blasi, F. S., Myjak, T.1989. Sur la porosité lescontraction sans point fixe ,C.R.Acad. Sci. Paris,308(1989), 51-54 .
  • [8] Lahiri, B. K., Dos,D.2005. Well-posedness and porosityof a certain class of operators, Demonstratio Math.,1(2005), 170-176.
  • [9] Reich, S., Zaslawski, A. J.2001. Well-posedness offixed point problems, Far East J. Math. Sci.(FJMS),(2001), 393-401.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nurcan Bilgili Güngör 0000-0001-5069-5881

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 23 Issue: 1

Cite

APA Bilgili Güngör, N. (2019). Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 1-5. https://doi.org/10.19113/sdufenbed.439699
AMA Bilgili Güngör N. Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces. J. Nat. Appl. Sci. April 2019;23(1):1-5. doi:10.19113/sdufenbed.439699
Chicago Bilgili Güngör, Nurcan. “Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 1 (April 2019): 1-5. https://doi.org/10.19113/sdufenbed.439699.
EndNote Bilgili Güngör N (April 1, 2019) Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 1–5.
IEEE N. Bilgili Güngör, “Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces”, J. Nat. Appl. Sci., vol. 23, no. 1, pp. 1–5, 2019, doi: 10.19113/sdufenbed.439699.
ISNAD Bilgili Güngör, Nurcan. “Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (April 2019), 1-5. https://doi.org/10.19113/sdufenbed.439699.
JAMA Bilgili Güngör N. Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces. J. Nat. Appl. Sci. 2019;23:1–5.
MLA Bilgili Güngör, Nurcan. “Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 1, 2019, pp. 1-5, doi:10.19113/sdufenbed.439699.
Vancouver Bilgili Güngör N. Common Fixed Point Theorems via Implicit Contractions in Soft Quasi Metric Spaces. J. Nat. Appl. Sci. 2019;23(1):1-5.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.