Research Article
BibTex RIS Cite

Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi

Year 2019, Volume: 23 Issue: 1, 52 - 58, 01.04.2019
https://doi.org/10.19113/sdufenbed.442199

Abstract










Hayvansal
gıda kaynakları insan beslenmesinde hayati önem taşımaktadır. Dengeli bir
diyet, yeterli ve kaliteli gıda maddeleri içermelidir. Uygun etiketleme insan
sağlığı için önemli olduğu kadar et endüstrisinde adil ticaret için de
önemlidir. DNA, fiziksel ve kimyasal gıda işleme tekniklerinden etkilenmediği
için, et ürünlerini oluşturan içeriğin kaynağı olan türleri ve oranlarını
belirlemek amacıyla DNA tabanlı kitler üretilmiştir. Çalışmamızın amacı, ticari
kitlerin Türkiye’deki et ürünleri tebliğine uygunluğunu incelemek ve et
ürünlerindeki tavuk ve sığır eti miktarını belirlemesini araştırmaktır. Çalışmamızda
et ürünlerindeki tavuk ve sığır eti miktarının belirlemek için TaqMan prob
kullanan Real Time PCR kitleri kullanılmıştır. Çalışma sonunda incelenen
kitlerin RT-PCR reaksiyonlarının eğim ve korelasyon katsayısı kriterleri uygun
bulunmuş ancak et ürünlerindeki çeşitli oranlardaki tavuk ve sığır etlerinin
kantitatif tayinleri yeterli bulunmamıştır.
    

References

  • [1] Hunt, D.J., Parkes, H.C., and Lumley, I.D. 1997. Identification of the species of origin of raw and cooked meat products using oligonucleotide probes. Food Chemistry, 60, 437-442.
  • [2] Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Shibata, K., Yamada, J., and Shinmura, Y. 1999. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science, 51, 143-148.
  • [3] Girish, P.S., Anjaneyulu, A.S., Viswas, K.N., Shivakumar, B.M., Anand, M., Patel, M., and Sharma, B. 2005. Meat species identification by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene. Meat Science, 70, 107-112.
  • [4] Haider, N., Nabulsi, I., and Al-Safadi, B. 2012. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science, 90, 490-493.
  • [5] Imaizumi, K., Akutsu, T., Miyasaka, S., and Yoshino, M. 2007. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. International Journal of Legal Medicine, 121, 184-191.
  • [6] Dooley, J.J., Paine, K.E., Garrett, S.D., and Brown, H.M. 2004. Detection of meat species using TaqMan real-time PCR assays. Meat Science, 68, 431-438.
  • [7] Zhang, C.-L., Fowler, M.R., Scott, N.W., Lawson, G., and Slater, A. 2007. A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control, 18, 1149-1158.
  • [8] Kesmen, Z., Yetiman, A.E., Sahin, F., and Yetim, H. 2012. Detection of chicken and turkey meat in meat mixtures by using real-time PCR assays. Journal of Food Science, 77, C167-173.
  • [9] Özpinar, H., Tezmen, G., Gökçe, İ., and Tekiner, İ.H. 2013. Detection of Animal Species in Some Meat and Meat Products by Comparatively Using DNA Microarray and Real Time PCR Methods. Kafkas Universitesi Veteriner Fakultesi Dergisi, 19, 245-252.
  • [10] Chou, C.C., Lin, S.P., Lee, K.M., Hsu, C.T., Vickroy, T.W., and Zen, J.M. 2007. Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 846, 230-239.
  • [11] Hans‐Jacob, S., Knut, K., and Ivar, H.K. 1998. Identification of animal species in ground meat mixtures by multivariate analysis of isoelectric focusing protein profiles. Electrophoresis, 19, 3103-3109.
  • [12] González-Córdova, A.F., Calderón de la Barca, A.M., Cota, M., and Vallejo-Córdoba, B. 1998. Detección inmunoquímica de la adulteración de chorizo de cerdo con proteínas de soja: Immunochemical detection of fraudulent adulteration of pork chorizo (sausage) with soy protein. Food Science and Technology International, 4, 257-262.
  • [13] Kamruzzaman, M., Sun, D.W., ElMasry, G., and Allen, P. 2013. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130-136.
  • [14] Rohman, A., Sismindari, Erwanto, Y., and Che Man, Y.B. 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science, 88, 91-95.
  • [15] Ballin, N.Z. 2010. Authentication of meat and meat products. Meat Science, 86, 577-587.
  • [16] Rahmati, S., Julkapli, N.M., Yehye, W.A., and Basirun, W.J. 2016. Identification of meat origin in food products-A review. Food Control, 68, 379-390.
  • [17] Chen, F.-C., Hsieh, Y.-H.P., and Bridgman, R.C. 2002. Monoclonal antibodies against troponin I for the detection of rendered muscle tissues in animal feedstuffs. Meat Science, 62, 405-412.
  • [18] Ayaz, Y., Ayaz, N.D., and Erol, I, 2006. Detection of Species In Meat And Meat Products Using Enzyme-Linked Immunosorbent Assay. Journal of Muscle Foods, 17, 214-220.
  • [19] Aristoy, M.C., and Toldra, F., 2004. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Science, 67, 211-217.
  • [20] Ballin, N.Z., Vogensen, F.K., and Karlsson, A.H. 2009. Species determination - Can we detect and quantify meat adulteration? Meat Science, 83, 165-174.
  • [21] Ballin, N.Z., Vogensen, F.K., and Karlsson, A.H. 2012. PCR amplification of repetitive sequences as a possible approach in relative species quantification. Meat Science, 90, 438-443.
  • [22] Lahiff, S., Glennon, M., Lyng, J., Smith, T., Shilton, N., and Maher, M. 2002. Real-Time Polymerase Chain Reaction Detection of Bovine DNA in Meat and Bone Meal Samples. Journal of Food Protection, 65, 1158-1165.
  • [23] Rodriguez, M.A., Garcia, T., Gonzalez, I., Hernandez, P.E., and Martin, R. 2005. TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures. Meat Science, 70, 113-120.
  • [24] Tanabe, S., Hase, M., Yano, T., Sato, M., Fujimura, T., and Akiyama, H. 2007. A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Bioscience, biotechnology, and biochemistry, 71, 3131-3135.
  • [25] Hird, H.J., Hold, G.L., Chisholm, J., Reece, P., Russell, V.J., Brown, J., Goodier, R., and MacArthur, R. 2004. Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. European Food Research and Technology, 220, 633-637.
  • [26] Laube, I., Zagon, J., and Broll, H. 2007. Quantitative determination of commercially relevant species in foods by real-time PCR. International Journal of Food Science & Technology, 42, 336-341.
  • [27] Kim, M., Yoo, I., Lee, S.Y., Hong, Y., and Kim, H.Y. 2016. Quantitative detection of pork in commercial meat products by TaqMan(R) real-time PCR assay targeting the mitochondrial D-loop region. Food chemistry, 210, 102-106.
  • [28] Lipp, M., Shillito, R., Giroux, R., Spiegelhalter, F., Charlton, S., Pinero, D., and Song, P. 2005. Polymerase Chain Reaction Technology as Analytical Tool in Agricultural Biotechnology. Journal of AOAC International, 88, 136-155.
  • [29] Eugster, A., Ruf, J., Rentsch, J., Hübner, P., and Köppel, R. 2007. Quantification of beef and pork fraction in sausages by real-time PCR analysis: results of an interlaboratory trial. European Food Research and Technology, 227, 17-20.
  • [30] Widmaier, E.P., Raff, H., and Strang, K.T. 2014. Vanders Human Physiology: The Mechanisms of Body Function. McGraw-Hill. New York, USA. 706s.
  • [31] Anonymous. 2012. Türk Gıda Kodeksi Et ve Et Ürünleri Tebliği. TC Gıda Tarım ve Hayvancılık Bakanlığı. Ankara.

Determination The Proportion of Chicken and Beef In Meat Products Using Some Commercial Kits

Year 2019, Volume: 23 Issue: 1, 52 - 58, 01.04.2019
https://doi.org/10.19113/sdufenbed.442199

Abstract










Animal
food sources are vital to human nutrition. A balanced diet should contain
adequate and high-quality food items. Proper labeling is important for human
health as well as for fair trade in meat industry. Since DNA is not affected by
physical and chemical food processing techniques, DNA-based kits are produced
to determine species and their proportions in meat products. The aim of our
study was to examine the suitability of commercially available kits for Turkey
notified meat products and to investigate proportion of chicken and beef in
meat products. Real Time PCR kits using TaqMan probe were used to determine the
amount of chicken and beef in meat products. As a result of the study, the
slope and correlation coefficient criteria of the RT-PCR reactions of the kit
were appropriate, but sensitivity of quantitative determinations of different
chicken and beef meat products were not sufficient
.    

References

  • [1] Hunt, D.J., Parkes, H.C., and Lumley, I.D. 1997. Identification of the species of origin of raw and cooked meat products using oligonucleotide probes. Food Chemistry, 60, 437-442.
  • [2] Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Shibata, K., Yamada, J., and Shinmura, Y. 1999. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science, 51, 143-148.
  • [3] Girish, P.S., Anjaneyulu, A.S., Viswas, K.N., Shivakumar, B.M., Anand, M., Patel, M., and Sharma, B. 2005. Meat species identification by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene. Meat Science, 70, 107-112.
  • [4] Haider, N., Nabulsi, I., and Al-Safadi, B. 2012. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science, 90, 490-493.
  • [5] Imaizumi, K., Akutsu, T., Miyasaka, S., and Yoshino, M. 2007. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. International Journal of Legal Medicine, 121, 184-191.
  • [6] Dooley, J.J., Paine, K.E., Garrett, S.D., and Brown, H.M. 2004. Detection of meat species using TaqMan real-time PCR assays. Meat Science, 68, 431-438.
  • [7] Zhang, C.-L., Fowler, M.R., Scott, N.W., Lawson, G., and Slater, A. 2007. A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control, 18, 1149-1158.
  • [8] Kesmen, Z., Yetiman, A.E., Sahin, F., and Yetim, H. 2012. Detection of chicken and turkey meat in meat mixtures by using real-time PCR assays. Journal of Food Science, 77, C167-173.
  • [9] Özpinar, H., Tezmen, G., Gökçe, İ., and Tekiner, İ.H. 2013. Detection of Animal Species in Some Meat and Meat Products by Comparatively Using DNA Microarray and Real Time PCR Methods. Kafkas Universitesi Veteriner Fakultesi Dergisi, 19, 245-252.
  • [10] Chou, C.C., Lin, S.P., Lee, K.M., Hsu, C.T., Vickroy, T.W., and Zen, J.M. 2007. Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 846, 230-239.
  • [11] Hans‐Jacob, S., Knut, K., and Ivar, H.K. 1998. Identification of animal species in ground meat mixtures by multivariate analysis of isoelectric focusing protein profiles. Electrophoresis, 19, 3103-3109.
  • [12] González-Córdova, A.F., Calderón de la Barca, A.M., Cota, M., and Vallejo-Córdoba, B. 1998. Detección inmunoquímica de la adulteración de chorizo de cerdo con proteínas de soja: Immunochemical detection of fraudulent adulteration of pork chorizo (sausage) with soy protein. Food Science and Technology International, 4, 257-262.
  • [13] Kamruzzaman, M., Sun, D.W., ElMasry, G., and Allen, P. 2013. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta, 103, 130-136.
  • [14] Rohman, A., Sismindari, Erwanto, Y., and Che Man, Y.B. 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science, 88, 91-95.
  • [15] Ballin, N.Z. 2010. Authentication of meat and meat products. Meat Science, 86, 577-587.
  • [16] Rahmati, S., Julkapli, N.M., Yehye, W.A., and Basirun, W.J. 2016. Identification of meat origin in food products-A review. Food Control, 68, 379-390.
  • [17] Chen, F.-C., Hsieh, Y.-H.P., and Bridgman, R.C. 2002. Monoclonal antibodies against troponin I for the detection of rendered muscle tissues in animal feedstuffs. Meat Science, 62, 405-412.
  • [18] Ayaz, Y., Ayaz, N.D., and Erol, I, 2006. Detection of Species In Meat And Meat Products Using Enzyme-Linked Immunosorbent Assay. Journal of Muscle Foods, 17, 214-220.
  • [19] Aristoy, M.C., and Toldra, F., 2004. Histidine dipeptides HPLC-based test for the detection of mammalian origin proteins in feeds for ruminants. Meat Science, 67, 211-217.
  • [20] Ballin, N.Z., Vogensen, F.K., and Karlsson, A.H. 2009. Species determination - Can we detect and quantify meat adulteration? Meat Science, 83, 165-174.
  • [21] Ballin, N.Z., Vogensen, F.K., and Karlsson, A.H. 2012. PCR amplification of repetitive sequences as a possible approach in relative species quantification. Meat Science, 90, 438-443.
  • [22] Lahiff, S., Glennon, M., Lyng, J., Smith, T., Shilton, N., and Maher, M. 2002. Real-Time Polymerase Chain Reaction Detection of Bovine DNA in Meat and Bone Meal Samples. Journal of Food Protection, 65, 1158-1165.
  • [23] Rodriguez, M.A., Garcia, T., Gonzalez, I., Hernandez, P.E., and Martin, R. 2005. TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures. Meat Science, 70, 113-120.
  • [24] Tanabe, S., Hase, M., Yano, T., Sato, M., Fujimura, T., and Akiyama, H. 2007. A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Bioscience, biotechnology, and biochemistry, 71, 3131-3135.
  • [25] Hird, H.J., Hold, G.L., Chisholm, J., Reece, P., Russell, V.J., Brown, J., Goodier, R., and MacArthur, R. 2004. Development of a method for the quantification of haddock (Melanogrammus aeglefinus) in commercial products using real-time PCR. European Food Research and Technology, 220, 633-637.
  • [26] Laube, I., Zagon, J., and Broll, H. 2007. Quantitative determination of commercially relevant species in foods by real-time PCR. International Journal of Food Science & Technology, 42, 336-341.
  • [27] Kim, M., Yoo, I., Lee, S.Y., Hong, Y., and Kim, H.Y. 2016. Quantitative detection of pork in commercial meat products by TaqMan(R) real-time PCR assay targeting the mitochondrial D-loop region. Food chemistry, 210, 102-106.
  • [28] Lipp, M., Shillito, R., Giroux, R., Spiegelhalter, F., Charlton, S., Pinero, D., and Song, P. 2005. Polymerase Chain Reaction Technology as Analytical Tool in Agricultural Biotechnology. Journal of AOAC International, 88, 136-155.
  • [29] Eugster, A., Ruf, J., Rentsch, J., Hübner, P., and Köppel, R. 2007. Quantification of beef and pork fraction in sausages by real-time PCR analysis: results of an interlaboratory trial. European Food Research and Technology, 227, 17-20.
  • [30] Widmaier, E.P., Raff, H., and Strang, K.T. 2014. Vanders Human Physiology: The Mechanisms of Body Function. McGraw-Hill. New York, USA. 706s.
  • [31] Anonymous. 2012. Türk Gıda Kodeksi Et ve Et Ürünleri Tebliği. TC Gıda Tarım ve Hayvancılık Bakanlığı. Ankara.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhammet Kaya 0000-0001-6474-121X

Ayşegül Arıkan Asan This is me 0000-0002-2664-4635

Şafak Başıaçık Karakoç This is me 0000-0001-9707-4097

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 23 Issue: 1

Cite

APA Kaya, M., Arıkan Asan, A., & Başıaçık Karakoç, Ş. (2019). Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(1), 52-58. https://doi.org/10.19113/sdufenbed.442199
AMA Kaya M, Arıkan Asan A, Başıaçık Karakoç Ş. Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi. J. Nat. Appl. Sci. April 2019;23(1):52-58. doi:10.19113/sdufenbed.442199
Chicago Kaya, Muhammet, Ayşegül Arıkan Asan, and Şafak Başıaçık Karakoç. “Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk Ve Sığır Eti Miktarının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 1 (April 2019): 52-58. https://doi.org/10.19113/sdufenbed.442199.
EndNote Kaya M, Arıkan Asan A, Başıaçık Karakoç Ş (April 1, 2019) Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 1 52–58.
IEEE M. Kaya, A. Arıkan Asan, and Ş. Başıaçık Karakoç, “Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi”, J. Nat. Appl. Sci., vol. 23, no. 1, pp. 52–58, 2019, doi: 10.19113/sdufenbed.442199.
ISNAD Kaya, Muhammet et al. “Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk Ve Sığır Eti Miktarının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/1 (April 2019), 52-58. https://doi.org/10.19113/sdufenbed.442199.
JAMA Kaya M, Arıkan Asan A, Başıaçık Karakoç Ş. Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi. J. Nat. Appl. Sci. 2019;23:52–58.
MLA Kaya, Muhammet et al. “Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk Ve Sığır Eti Miktarının Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 1, 2019, pp. 52-58, doi:10.19113/sdufenbed.442199.
Vancouver Kaya M, Arıkan Asan A, Başıaçık Karakoç Ş. Bazı Ticari Kitler Kullanılarak Et Ürünlerindeki Tavuk ve Sığır Eti Miktarının Belirlenmesi. J. Nat. Appl. Sci. 2019;23(1):52-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.