Research Article
BibTex RIS Cite

Davutoğlan Kuş Cenneti Kilinin Kimyasal ve Mineralojik Yapısının Antimikrobiyal Etkinliği Açısından Değerlendirilmesi

Year 2019, Volume: 23 Issue: Special [en], 147 - 154, 01.03.2019
https://doi.org/10.19113/sdufenbed.446772

Abstract

Bu
çalışmada endüstri bölgelerine uzak bir ekolojik ortam olan Davutoğlan Kuş
Cenneti Kıztepe mevki eteklerinden alınan kil örneğinin olası antimikrobiyal
özellikleri incelenmiştir. Bölgeden alınan kil örneklerinin Gram(-) (Escherichia coli, Pseudomonas aeruginosa)
ve Gram(+) (Bacillus subtilis,
Enterococcus faecalis, Staphylococcus aureus
) patojen bakteri türleri
üzerindeki antimikrobiyal etkileri araştırılmıştır. Kilin 0.5-1.5 g/mL
konsantrasyon aralığında 105 cfu/mL bakteri inokülasyonlarına karşı
bakteriostatik etkide olduğu gösterilmiştir. Bu sonuçları desteklemek ve
bulguları açıklamak amacıyla antimikrobiyal aktivite çalışmasına paralel olarak
kil örneğinde X-ışınları kırınımı (XRD), X-ışınları floresans (XRF),
Termogravimetri (TG) çalışmaları ile kilin minerolojik ve kimyasal yapısı
belirlenmiştir. Ayrıca kilin gözenek yapısı ve yüzey alanını belirlemek için
taramalı elektron mikroskobu (SEM) ve Brauer-Emmet-Teller (BET) yöntemleri
kullanılmıştır. Tüm bu analizlerden elde edilen sonuçlar antimikrobiyal
aktivite değerleri ile ilişkilendirilmiştir. Sahadan alınan kil örnekleği XRD,
XRF ve TG analiz sonuçlarına göre illit, dolomit ve kalsit içerdiği tespit
edilmiş ve BET sonuçlarına göre kil 57,002 m2/g gibi geniş yüzey
alanına sahip olduğu bulunmuştur. Geniş yüzey alanı kuvvetli absorbans özellik
kazandırdığından ve bu geniş yüzey alanı oksidasyon için uygun bir ara yüzey
olduğundan bakteriyal üremeyi baskıladığı sonucuna varılmıştır.

References

  • [1] Öz, S., Demirci, Ş. 2017. Arkeokimyaya Genel Bakış. 1. Baskı. Gazi Kitapevi, Ankara, 84s.
  • [2] Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., Leanord, A. 2015. Testing Dioscorides' medicinal clays for their antibacterial properties: the case of Samian Earth. Journal of Archaeological Science, 57(2015), 257-267.
  • [3] Hall, A. J., Photos-Jones, E. 2008. Accessing past beliefs and practices: the case of Lemnian Earth. Archaeometry, 50(6), 1034-1049.
  • [4] Carretero, M. I., Pozo, M. 2010. Clay and non-clay minerals in pharmaceutical and cosmetic industries Part II. Actice ingredients, 47(3-4), 171-181.
  • [5] Carretero, M. I. 2002. Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21(3-4), 155-163.
  • [6] Carretero, M.I., Gomes, C.S.F.,Tateo, F. 2006 Clays and Human Health: Handbook of Clay Science. Elsevier Ltd. Vol 1. 221s.
  • [7] Slamova, R., Trckova, M., Vondruskova, H., Zraly, Z., Pavlik, I. 2011. Clay minerals in animal nutrition. Applied Clay Science, 51(4), 395-398.
  • [8] Carretero, M. I., Pozo, M. 2010. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47(3-4), 171–181.
  • [9] Gomes, C. S. F., Silva, J. B. P. 2007. Minerals and clay minerals in medical geology. Applied Clay Science, 36(1-3), 4-21.
  • [10] Williams, L. B., Haydel, S. E., Giese, R. F., Jr., Eberl D. D. 2008. Chemical and mineralogical characteristics of French green clays used for healing. Clays Clay Miner, 56(4), 437-452.
  • [11] Williams, L. B., Holland, M., Eberl D. D., Brunet, T., De Courrsou, B. 2004. Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, (139), 3-8.
  • [12] Haydel, S. E., Remenih, C. M., Williams, L. B. 2008. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 61(2), 353-361.
  • [13] Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., Poret-Peterson, A. T. 2011. Environmental Science & Technology, 45(8), 3768-3773.
  • [14] Cervini-Silva, J., Nieto-Camacho, A., Ramírez-Apan, M. T., Gómez-Vidales, V., Palacios, E., Montoya, A., Ronquillo de Jesús, E. 2015. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays. Colloids and surfaces. B, Biointerfaces, 129, 1-6.
  • [15] Zarate-Reyes, L., Lopez-Pacheco, C., Nieto-Camacho, A., Palacios, E., Gómez-Vidales, V., Kaufhold, S., Ufer, K., García Zepeda, E., Cervini-Silva J. 2017. Antibacterial clay against gram-negative antibiotic resistant bacteria. Journal of Hazardous Materials, 342, 625-632.
  • [16] Mpuchane, S. F., Ekosse, G. I. E., Gashe, B. A., Morobe, I., Coetzee, S. H. 2010. Microbiological characterisation of southern African medicinal and cosmetic clays. International Journal of Environmental Health Research, 20(1), 27-41.
  • [17] Unuabonah, E. I., Ugwuja, C. G., Omorogie, M. O., Adewuyi, A., Oladoja, N. A. 2018. Clays for efficient disinfection of bacteria in water. Applied Clay Science, 151, 211-223.
  • [18] Londono, S. C., Hartnett, H. E., Williams, L. B. 2017. Antibacterial activity of aluminum in clay from the colombian amazon. Environmental Science & Technology, 51(4), 2401-2408.
  • [19] Morrison, K. D., Misra, R., Williams, L. B. 2016. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6,19043.
  • [20] Huang, P. M., Wang, M. K., Chiu, C. Y. 2005. Soil mineral–organic matter–microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 49(6), 609-635.
  • [21] Kalafatçıoğlu, A., Uysallı, H. 1964. Geology of the Beypazarı-Nallıhan and Seben region. Bulletin of the mineral research and exploration, 62, 1-13.
  • [22] Helvacı, C. 2010. Geology of the Beypazarı trona field, Ankara, Turkey. Mid-congress Field Exursion Guide Book, Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, 4-8 Ekim, Ankara, 33s.
  • [23] Nolte, W. A. 1982. Oral Microbiology. Mosby, London, 34s.
  • [24] Liu, D., Dong, H., Bishop, M. E., Zhang ,J., Wang, H., Xie, S., Wang, S., Huang, L., Eberl, D. D. 2012. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10(2), 150-162.
  • [25] Spiro, T. G., Purvis-Roberts, K. L., Stigliani W. M. 1996. Chemistry of the environment. 3rd edition. University Science Books, North America, 595s.
  • [26] Gündüz, T. 1984. Kantitatif analiz laboratuvar kitabı. 3. baskı. Ankara Üniversitesi Fen Fakültesi Yayınları, Ankara, 208s.
  • [27] Kaim, W., Schwederski, B. 2004. Bioanorganische Chemie. 4. Durchgesehene Auflage. B. G. Teubner Verlag, Leipzig, 14s.
  • [28] Jiang, D., Huang, Q., Cai, P., Rong, X., Chen, W. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids and surfaces. B, Biointerfaces, 54(2), 217-221.

Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency

Year 2019, Volume: 23 Issue: Special [en], 147 - 154, 01.03.2019
https://doi.org/10.19113/sdufenbed.446772

Abstract

In this
study we examined possible antimicrobial properties of clay specimen taken from
Davutoğlan Bird Sanctuary which is located in Kıztepe skirts as a remote
ecological environment to industrial areas. Antimicrobial effects of Gram (-) (Escherichia coli, Pseudomonas aeruginosa)
and Gram (+) (Bacillus subtilis,
Enterococcus faecalis, Staphylococcus aureus
) pathogenic bacteria species
on clay samples collected from the region were investigated. Between 0.5-1.5
g/mL concentration range clay has been shown to affect bacterial growth with
the bacterial inoculations of 105 cfu/mL. X-ray diffraction (XRD),
X-ray fluorescence (XRF) and thermogravimetric (TG) studies of clay minerals
and chemical structure have been determined in parallel with the study of
antimicrobial activity in order to support these results and to explain the
findings. In addition, scanning electron microscopy (SEM) and
Brunauer–Emmett–Teller (BET) methods were used to determine the pore structure
and surface area of the clay. The obtained results  were correlated with antimicrobial activity.
According to XRD, XRF and TG analysis results, illite, dolomite and calcite
were found to be major clay minerals from the samples taken from the area. It
was found that they have a large surface area of 57,002 m2/g
according to BET results. It is also concluded that since the large surface
area gives strong absorbent properties and supplies a suitable interface for
oxidation, suppression of the bacterial growth is observed.

References

  • [1] Öz, S., Demirci, Ş. 2017. Arkeokimyaya Genel Bakış. 1. Baskı. Gazi Kitapevi, Ankara, 84s.
  • [2] Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., Leanord, A. 2015. Testing Dioscorides' medicinal clays for their antibacterial properties: the case of Samian Earth. Journal of Archaeological Science, 57(2015), 257-267.
  • [3] Hall, A. J., Photos-Jones, E. 2008. Accessing past beliefs and practices: the case of Lemnian Earth. Archaeometry, 50(6), 1034-1049.
  • [4] Carretero, M. I., Pozo, M. 2010. Clay and non-clay minerals in pharmaceutical and cosmetic industries Part II. Actice ingredients, 47(3-4), 171-181.
  • [5] Carretero, M. I. 2002. Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21(3-4), 155-163.
  • [6] Carretero, M.I., Gomes, C.S.F.,Tateo, F. 2006 Clays and Human Health: Handbook of Clay Science. Elsevier Ltd. Vol 1. 221s.
  • [7] Slamova, R., Trckova, M., Vondruskova, H., Zraly, Z., Pavlik, I. 2011. Clay minerals in animal nutrition. Applied Clay Science, 51(4), 395-398.
  • [8] Carretero, M. I., Pozo, M. 2010. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47(3-4), 171–181.
  • [9] Gomes, C. S. F., Silva, J. B. P. 2007. Minerals and clay minerals in medical geology. Applied Clay Science, 36(1-3), 4-21.
  • [10] Williams, L. B., Haydel, S. E., Giese, R. F., Jr., Eberl D. D. 2008. Chemical and mineralogical characteristics of French green clays used for healing. Clays Clay Miner, 56(4), 437-452.
  • [11] Williams, L. B., Holland, M., Eberl D. D., Brunet, T., De Courrsou, B. 2004. Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, (139), 3-8.
  • [12] Haydel, S. E., Remenih, C. M., Williams, L. B. 2008. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy, 61(2), 353-361.
  • [13] Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., Poret-Peterson, A. T. 2011. Environmental Science & Technology, 45(8), 3768-3773.
  • [14] Cervini-Silva, J., Nieto-Camacho, A., Ramírez-Apan, M. T., Gómez-Vidales, V., Palacios, E., Montoya, A., Ronquillo de Jesús, E. 2015. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays. Colloids and surfaces. B, Biointerfaces, 129, 1-6.
  • [15] Zarate-Reyes, L., Lopez-Pacheco, C., Nieto-Camacho, A., Palacios, E., Gómez-Vidales, V., Kaufhold, S., Ufer, K., García Zepeda, E., Cervini-Silva J. 2017. Antibacterial clay against gram-negative antibiotic resistant bacteria. Journal of Hazardous Materials, 342, 625-632.
  • [16] Mpuchane, S. F., Ekosse, G. I. E., Gashe, B. A., Morobe, I., Coetzee, S. H. 2010. Microbiological characterisation of southern African medicinal and cosmetic clays. International Journal of Environmental Health Research, 20(1), 27-41.
  • [17] Unuabonah, E. I., Ugwuja, C. G., Omorogie, M. O., Adewuyi, A., Oladoja, N. A. 2018. Clays for efficient disinfection of bacteria in water. Applied Clay Science, 151, 211-223.
  • [18] Londono, S. C., Hartnett, H. E., Williams, L. B. 2017. Antibacterial activity of aluminum in clay from the colombian amazon. Environmental Science & Technology, 51(4), 2401-2408.
  • [19] Morrison, K. D., Misra, R., Williams, L. B. 2016. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6,19043.
  • [20] Huang, P. M., Wang, M. K., Chiu, C. Y. 2005. Soil mineral–organic matter–microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 49(6), 609-635.
  • [21] Kalafatçıoğlu, A., Uysallı, H. 1964. Geology of the Beypazarı-Nallıhan and Seben region. Bulletin of the mineral research and exploration, 62, 1-13.
  • [22] Helvacı, C. 2010. Geology of the Beypazarı trona field, Ankara, Turkey. Mid-congress Field Exursion Guide Book, Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia, 4-8 Ekim, Ankara, 33s.
  • [23] Nolte, W. A. 1982. Oral Microbiology. Mosby, London, 34s.
  • [24] Liu, D., Dong, H., Bishop, M. E., Zhang ,J., Wang, H., Xie, S., Wang, S., Huang, L., Eberl, D. D. 2012. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10(2), 150-162.
  • [25] Spiro, T. G., Purvis-Roberts, K. L., Stigliani W. M. 1996. Chemistry of the environment. 3rd edition. University Science Books, North America, 595s.
  • [26] Gündüz, T. 1984. Kantitatif analiz laboratuvar kitabı. 3. baskı. Ankara Üniversitesi Fen Fakültesi Yayınları, Ankara, 208s.
  • [27] Kaim, W., Schwederski, B. 2004. Bioanorganische Chemie. 4. Durchgesehene Auflage. B. G. Teubner Verlag, Leipzig, 14s.
  • [28] Jiang, D., Huang, Q., Cai, P., Rong, X., Chen, W. 2007. Adsorption of Pseudomonas putida on clay minerals and iron oxide. Colloids and surfaces. B, Biointerfaces, 54(2), 217-221.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şaziye Betül Sopacı 0000-0002-2840-4985

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 23 Issue: Special [en]

Cite

APA Sopacı, Ş. B. (2019). Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 147-154. https://doi.org/10.19113/sdufenbed.446772
AMA Sopacı ŞB. Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency. SDÜ Fen Bil Enst Der. March 2019;23:147-154. doi:10.19113/sdufenbed.446772
Chicago Sopacı, Şaziye Betül. “Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, March (March 2019): 147-54. https://doi.org/10.19113/sdufenbed.446772.
EndNote Sopacı ŞB (March 1, 2019) Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 147–154.
IEEE Ş. B. Sopacı, “Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency”, SDÜ Fen Bil Enst Der, vol. 23, pp. 147–154, 2019, doi: 10.19113/sdufenbed.446772.
ISNAD Sopacı, Şaziye Betül. “Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (March 2019), 147-154. https://doi.org/10.19113/sdufenbed.446772.
JAMA Sopacı ŞB. Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency. SDÜ Fen Bil Enst Der. 2019;23:147–154.
MLA Sopacı, Şaziye Betül. “Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, 2019, pp. 147-54, doi:10.19113/sdufenbed.446772.
Vancouver Sopacı ŞB. Evaluation of Chemical and Mineralogical Structure of Davutoğlan Bird Sanctuary Clay for It’s Antimicrobial Efficiency. SDÜ Fen Bil Enst Der. 2019;23:147-54.

e-ISSN: 1308-6529