Research Article
BibTex RIS Cite

A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling

Year 2019, Volume: 23 Issue: Special [en], 99 - 107, 01.03.2019
https://doi.org/10.19113/sdufenbed.538776

Abstract

When
the population is heterogeneous, stratified random sampling is generally
preferred for estimation the population parameters. There are a lot of sample
allocation methods in stratified random sampling. However, most of sample
allocation methods ignore the selection cost or assume the selection cost as equal
in all strata. Bankier also suggested a power allocation method without
considering the cost function [1]. However, in real life applications, it is
very rare to come across such cases. Therefore, it would be more realistic to
take the cost into account for allocation procedures. In this study, a new
power allocation method is proposed by taking into account a non-linear cost
function constraint in Bankier’s method. The Neyman allocation and square root
allocation results are also obtained by using this new allocation method. The
performance of the proposed method is examined for different model parameters and
their different cases using data from 2012 Structural Business Survey of TURKSTAT
.

References

  • [1] Bankier M. 1988. Power Allocation: Determining Sample Sizes for Sub-national Areas. The American Statistician, 42, 174-177.
  • [2] Cochran W. G. 1977. Sampling Techniques. John Wiley and Sons, 428s.
  • [3] Carroll J. 1970. Allocation of a Sample Between States. Unpublished memorandum, Australian Bureau of Census and Statistics.
  • [4] Felligi I. P. 1981. Should be Census Counts be Adjusted for Allocation Purposes? -Equity Considerations. In Current Topics in Survey Sampling, eds. D. Krewski, R. Platek, and J.N.K. Rao, New York: Academic Press, pp. 47-76.
  • [5] Costa A, Satorra A. & Venture E. 2004. Improving both Domain and Total Area Estimation by Composition. SORT, 28, 69-8.
  • [6] Longford N. T. 2006. Sample Size Calculation for Small-area Estimation. Survey Methodology, 32, 87-966.
  • [7] Choudry G. H., Rao J.N.K. & Hidiroglou M. A. 2012. On Sample Allocation for Efficient Domain Estimation. Survey Methodology, 38(1):23-29.
  • [8] Şahin Tekin T. S., Özdemir Y. A. & Metin C. B. 2017. A New Compromise Allocation Method in Stratified Random Sampling. Gazi University Journal of Science, 30(3): 181-194.
  • [9] Bretthauer K. M., Ross A. & Shetty B. 1999. Nonlinear İnteger Programming for Optimal Allocation in Stratified Sampling. European Journal of Operational Research, 116:667-680.
  • [10] Chernyak A. 2001. Optimal Allocation in Stratified and Double Random Sampling with a Nonlinear Cost Function. Journal of Mathematical Sciences, 103(4): 525-528.

Tabakalı Tesadüfi Örneklemede Doğrusal Olmayan Maliyet Kısıtı Altında Yeni bir Güç Paylaştırma Yöntemi

Year 2019, Volume: 23 Issue: Special [en], 99 - 107, 01.03.2019
https://doi.org/10.19113/sdufenbed.538776

Abstract

Yığın
heterojen olduğunda, yığın parametrelerini tahmin etmek için genellikle
tabakalı tesadüfi
örnekleme
tercih edilir. Tabakalı tesadüfi örneklemede çok sayıda örnek paylaştırma yöntemi
bulunmaktadır. Bununla birlikte, örnek paylaştırma yöntemlerinin çoğu
tabakalardan birim seçme maliyetini ihmal etmekte ya da bütün tabakalar için
eşit varsaymaktadır. Bankier da maliyet fonksiyonunu göz önüne almayan bir güç
paylaştırma
yöntemi
önermiştir [1]. Bununla birlikte uygulamalarda, maliyetin olmadığı durumlarla
karşılaşmak yok denecek kadar azdır. Bu yüzden, paylaştırma işlemi için
maliyeti göz önüne almak daha gerçekçi bir yaklaşım olacaktır. Bu çalışmada,
Bankier’ın modeline doğrusal olmayan maliyet kısıtını ekleyen yeni bir güç
paylaştırma yöntemi önerilmiştir. Önerilen yöntemin performansı, farklı model
parametreleri ve parametrelerin farklı durumları için
2012 TUİK
Yapısal İş İstatistikleri verisi kullanılarak incelenmiştir.

References

  • [1] Bankier M. 1988. Power Allocation: Determining Sample Sizes for Sub-national Areas. The American Statistician, 42, 174-177.
  • [2] Cochran W. G. 1977. Sampling Techniques. John Wiley and Sons, 428s.
  • [3] Carroll J. 1970. Allocation of a Sample Between States. Unpublished memorandum, Australian Bureau of Census and Statistics.
  • [4] Felligi I. P. 1981. Should be Census Counts be Adjusted for Allocation Purposes? -Equity Considerations. In Current Topics in Survey Sampling, eds. D. Krewski, R. Platek, and J.N.K. Rao, New York: Academic Press, pp. 47-76.
  • [5] Costa A, Satorra A. & Venture E. 2004. Improving both Domain and Total Area Estimation by Composition. SORT, 28, 69-8.
  • [6] Longford N. T. 2006. Sample Size Calculation for Small-area Estimation. Survey Methodology, 32, 87-966.
  • [7] Choudry G. H., Rao J.N.K. & Hidiroglou M. A. 2012. On Sample Allocation for Efficient Domain Estimation. Survey Methodology, 38(1):23-29.
  • [8] Şahin Tekin T. S., Özdemir Y. A. & Metin C. B. 2017. A New Compromise Allocation Method in Stratified Random Sampling. Gazi University Journal of Science, 30(3): 181-194.
  • [9] Bretthauer K. M., Ross A. & Shetty B. 1999. Nonlinear İnteger Programming for Optimal Allocation in Stratified Sampling. European Journal of Operational Research, 116:667-680.
  • [10] Chernyak A. 2001. Optimal Allocation in Stratified and Double Random Sampling with a Nonlinear Cost Function. Journal of Mathematical Sciences, 103(4): 525-528.
There are 10 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sinem Tuğba Şahin Tekin 0000-0003-3544-8123

Cenker Burak Metin This is me 0000-0002-5968-0261

Yaprak Arzu Özdemir 0000-0003-3752-9744

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 23 Issue: Special [en]

Cite

APA Şahin Tekin, S. T., Metin, C. B., & Özdemir, Y. A. (2019). A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, 99-107. https://doi.org/10.19113/sdufenbed.538776
AMA Şahin Tekin ST, Metin CB, Özdemir YA. A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling. J. Nat. Appl. Sci. March 2019;23:99-107. doi:10.19113/sdufenbed.538776
Chicago Şahin Tekin, Sinem Tuğba, Cenker Burak Metin, and Yaprak Arzu Özdemir. “A New Power Allocation Method With a Nonlinear Cost Constraint in Stratified Random Sampling”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, March (March 2019): 99-107. https://doi.org/10.19113/sdufenbed.538776.
EndNote Şahin Tekin ST, Metin CB, Özdemir YA (March 1, 2019) A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 99–107.
IEEE S. T. Şahin Tekin, C. B. Metin, and Y. A. Özdemir, “A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling”, J. Nat. Appl. Sci., vol. 23, pp. 99–107, 2019, doi: 10.19113/sdufenbed.538776.
ISNAD Şahin Tekin, Sinem Tuğba et al. “A New Power Allocation Method With a Nonlinear Cost Constraint in Stratified Random Sampling”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 (March 2019), 99-107. https://doi.org/10.19113/sdufenbed.538776.
JAMA Şahin Tekin ST, Metin CB, Özdemir YA. A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling. J. Nat. Appl. Sci. 2019;23:99–107.
MLA Şahin Tekin, Sinem Tuğba et al. “A New Power Allocation Method With a Nonlinear Cost Constraint in Stratified Random Sampling”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, 2019, pp. 99-107, doi:10.19113/sdufenbed.538776.
Vancouver Şahin Tekin ST, Metin CB, Özdemir YA. A New Power Allocation Method with a Nonlinear Cost Constraint in Stratified Random Sampling. J. Nat. Appl. Sci. 2019;23:99-107.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.