Research Article
BibTex RIS Cite

The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application

Year 2019, Volume: 23 Issue: 3, 709 - 716, 25.12.2019
https://doi.org/10.19113/sdufenbed.529398

Abstract

In this
study, anion exchange membranes (AEM) based on poly(vinyl alcohol) (PVA) were
prepared by two different cross-linking techniques and the effects of application
sequence of thermal and chemical cross-linking technique on properties of AEM
were investigated. Poly(ethylene glycol) diglycidly ether (PEGDGE) was used as
a chemical cross-linking agent instead of the commonly used glutaraldehyde (GA).
Evaluation of the fuel cell-related properties of the prepared membranes showed
that the technique of cross-linking and the application sequence of techniques
affected the properties of membranes. Promisingly, it was found that the
membranes prepared by firstly chemical cross-linking and then thermal
cross-linking at 150˚C (PPP150) exhibited high ionic conductivity (47 mS/cm),
membrane selectivity values (89 x104 S.s/cm3) and
sufficient mechanical strength. These encouraging results indicate that
AEMs-based on PVA cross-linked by chemical technique with PEGDGE and then
thermal technique may be considered as a promising membrane for Direct Methanol
Alkaline Fuel Cell (DMFC) applications.

References

  • [1] Shevchenko, V.V., Gumennaya, M.A. 2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theoritical and Experimental Chemistry, 46, 139–152.
  • [2] Merle, G., Hosseiny, S.S., Wessling, M., Nijmeijer, K. 2012. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. Journal of Membrane Science, 409–410, 191–199.
  • [3] Merle, G., Wessling, M., Nijmeijer, K. 2011. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377, 1–35.
  • [4] Kang, J.J., Li, W.Y., Lin, Y., Li, X.P., Xiao, X.R., Fang, S.B. 2004. Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups. Polymers for Advanced Technologies 15, 61–64.
  • [5] Fang, J., Shen, P.K. 2006. Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. Journal of Membrane Science, 285, 317–322.
  • [6] Vassal, N., Salmon, E., Fauvarque, J.F. 2000. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochimica Acta, 45, 1527–1532.
  • [7] Jheng, L., Hsu, S.L., Lin, B., Hsu, Y. 2014. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. Journa of Membrane Science, 460, 160–170.
  • [8] Qiao, J., Fu, J. , Lin, R., Ma, J., Liu, J. 2010. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer, 51, 4850–4859. [9] Arı, G.A., Özcan, Z. 2016. A novel approach for stable anion exchange membrane: Self-assembled multilayer formation on the membrane via LbL method. Synthetic Metals, 220, 269-275.
  • [10] Zhang, J., Qiao, J., Jiang, G., Liu, L., Liu, Y. 2013. Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359–367.
  • [11] Gümüşoĝlu, T., Ari, G.A., Deligöz, H. 2011. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. Journal of Membrane Science, 376, 25-34.
  • [12] Svang-Ariyaskul, A., Huang, R.Y.M., Douglas, P.L., Pal, R., Feng, X., Chen, P., Liu, L. 2006. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 280, 815–823.
  • [13] Jin, X., Li, L., Xu, R., Liu, Q., Ding, L., Pan, Y., Wang, C., Hung, W., Lee, K., Wang, T. 2018. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile. Polymers (Basel), 10, 1–16.
  • [14] Xiong, Y., Fang, J., Zeng, Q.H., Liu, Q.L. 2008. Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 311, 319–325.

Doğrudan Metanol Alkali Yakıt Hücresi Uygulamaları İçin Çapraz Bağlama Yönteminin Membran Performansı Üzerine Etkisi

Year 2019, Volume: 23 Issue: 3, 709 - 716, 25.12.2019
https://doi.org/10.19113/sdufenbed.529398

Abstract

Bu
çalışmada poli (vinil alkol) (PVA) esaslı anyon değişim membranlar (AEM) iki
farklı çapraz bağlama tekniği ile hazırlanmış ve ısıl ve kimyasal çapraz
bağlama tekniklerinin uygulanma sırasının AEM’ın özellikleri üzerine etkisi incelenmiştir.
Kimyasal çapraz bağlayıcı olarak en çok kullanılmakta olan glutaraldehit (GA)
yerine poli(etilen glikol) diglisidil eter (PEGDGE) kullanılmıştır. Hazırlanan
membranların yakıt hücresi ile ilgili özellikleri değerlendirildiğinde, çapraz
bağlama tekniğinin ve farklı tekniklerin uygulama sırasının membranın
özelliklerini etkilediği görülmüştür. Önce kimyasal sonra 150˚C’de ısıl çapraz
bağlama uygulanarak hazırlanan membranın (PPP150) yüksek iyonik iletkenlik (47
mS/cm), membran seçimlilik (89 x104 S.s/cm3)  ve yeterli mekanik dayanıma sahip olduğu
görülmüştür. Elde edilen sonuçlar, önce PEGDGE ile kimyasal, sonra ısıl olarak
çapraz bağlanan PVA esaslı anyon değişim membranların Doğrudan Metanol Alkali
Yakıt Hücresi (DMFC) uygulamaları için ümit veren membranlar olarak
düşünülebileceğini göstermiştir.

References

  • [1] Shevchenko, V.V., Gumennaya, M.A. 2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theoritical and Experimental Chemistry, 46, 139–152.
  • [2] Merle, G., Hosseiny, S.S., Wessling, M., Nijmeijer, K. 2012. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. Journal of Membrane Science, 409–410, 191–199.
  • [3] Merle, G., Wessling, M., Nijmeijer, K. 2011. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 377, 1–35.
  • [4] Kang, J.J., Li, W.Y., Lin, Y., Li, X.P., Xiao, X.R., Fang, S.B. 2004. Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups. Polymers for Advanced Technologies 15, 61–64.
  • [5] Fang, J., Shen, P.K. 2006. Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. Journal of Membrane Science, 285, 317–322.
  • [6] Vassal, N., Salmon, E., Fauvarque, J.F. 2000. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochimica Acta, 45, 1527–1532.
  • [7] Jheng, L., Hsu, S.L., Lin, B., Hsu, Y. 2014. Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. Journa of Membrane Science, 460, 160–170.
  • [8] Qiao, J., Fu, J. , Lin, R., Ma, J., Liu, J. 2010. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer, 51, 4850–4859. [9] Arı, G.A., Özcan, Z. 2016. A novel approach for stable anion exchange membrane: Self-assembled multilayer formation on the membrane via LbL method. Synthetic Metals, 220, 269-275.
  • [10] Zhang, J., Qiao, J., Jiang, G., Liu, L., Liu, Y. 2013. Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359–367.
  • [11] Gümüşoĝlu, T., Ari, G.A., Deligöz, H. 2011. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. Journal of Membrane Science, 376, 25-34.
  • [12] Svang-Ariyaskul, A., Huang, R.Y.M., Douglas, P.L., Pal, R., Feng, X., Chen, P., Liu, L. 2006. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science, 280, 815–823.
  • [13] Jin, X., Li, L., Xu, R., Liu, Q., Ding, L., Pan, Y., Wang, C., Hung, W., Lee, K., Wang, T. 2018. Effects of thermal cross-linking on the structure and property of asymmetric membrane prepared from the polyacrylonitrile. Polymers (Basel), 10, 1–16.
  • [14] Xiong, Y., Fang, J., Zeng, Q.H., Liu, Q.L. 2008. Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 311, 319–325.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gülşen Albayrak Arı 0000-0001-9890-518X

Coşkun Gülen This is me 0000-0002-7964-8787

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Albayrak Arı, G., & Gülen, C. (2019). The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 709-716. https://doi.org/10.19113/sdufenbed.529398
AMA Albayrak Arı G, Gülen C. The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. SDÜ Fen Bil Enst Der. December 2019;23(3):709-716. doi:10.19113/sdufenbed.529398
Chicago Albayrak Arı, Gülşen, and Coşkun Gülen. “The Effect of Cross-Linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 709-16. https://doi.org/10.19113/sdufenbed.529398.
EndNote Albayrak Arı G, Gülen C (December 1, 2019) The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 709–716.
IEEE G. Albayrak Arı and C. Gülen, “The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application”, SDÜ Fen Bil Enst Der, vol. 23, no. 3, pp. 709–716, 2019, doi: 10.19113/sdufenbed.529398.
ISNAD Albayrak Arı, Gülşen - Gülen, Coşkun. “The Effect of Cross-Linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 709-716. https://doi.org/10.19113/sdufenbed.529398.
JAMA Albayrak Arı G, Gülen C. The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. SDÜ Fen Bil Enst Der. 2019;23:709–716.
MLA Albayrak Arı, Gülşen and Coşkun Gülen. “The Effect of Cross-Linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 709-16, doi:10.19113/sdufenbed.529398.
Vancouver Albayrak Arı G, Gülen C. The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. SDÜ Fen Bil Enst Der. 2019;23(3):709-16.

e-ISSN: 1308-6529