Research Article
BibTex RIS Cite

Effect of Silicon Application on Wheat Under Boron Stress

Year 2019, Volume: 23 Issue: 3, 743 - 747, 25.12.2019
https://doi.org/10.19113/sdufenbed.535286

Abstract

In this study, effects of different silicon (Si)
concentrations (0.75, 5, 10 mM) on wheat under boron(B) stress, investigated by
means of some stress indicators such as tissue length, malondialdehyde (MDA),
ion leakage, relative water content (RWC) and total chlorophyll content. Stress
mitigating effects of silicon were observed mainly as reductions on membrane
damage with reduced MDA concentrations and decreased ion leakage levels. Although
necrosis was present on shoot tissues due to the boron stress, no significant
change observed on shoot and root length with the application of Si. On the
contrary, relative water content (RWC) has changed positively with the
implementation of Si under boron stress. Furthermore Si has enhanced RWC level
in Si+B co-applicated sets to the level of control plants. Total chlorophyll
content increased with the existance of 0.75 and 5 mM Si, while 10 mM Si had no
effect on the chorophyll content under boron stress. Overall, silicon was found
to have a potential to alleviate boron stress in wheat production
.

References

  • [1] Herrera-Rodríguez, M. B., González-Fontes, A., Rexach, J., Camacho-Cristóbal, J. J., Maldonado, J. M., Navarro-Gochicoa, M. T. 2010. Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
  • [2] Kobayashi, M., Matoh, T., Azuma, J. 1996. Two Chains of Rhamnogalacturonan II are Cross-Linked by Borate-diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110, 1017-120.
  • [3] Schnurbusch, T., Hayes, J., Sutton, T. 2010. Boron Toxicity Tolerance in Wheat and Barley: Australian Perspectives. Breeding Science, 60, 297–304.
  • [4] Inal, A., Pilbeam, D. J., Gunes, A. 2009. Silicon Increases Tolerance to Boron Toxicity and Reduces Oxidative Damage in Barley. Journal of Plant Nutrition, 32(1), 112-128.
  • [5] Türe, C., Bell, R.W. 2004. Plant Distribution and its Relationship to Extractable Boron in Naturally Occurring High Boron Soils in Turkey. Israel Journal of Plant Science, 52, 125–132.
  • [6] Onthong, J., Yoajui, N., Kaewsichan, L. 2011. Alleviation of Plant Boron Toxicity by Using Water to Leach Boron from Soil Contaminated by Wastewater from Rubber Wood Factories. Science Asia, 37, 314–319.
  • [7] Cervilla, L. M., Blasco, J. J., Rios, M. A., Rosales, E., Sánchez-Rodríguez, M. M., Rubio-Wilhelmi, L., Romero, L., Ruiz, J. M. 2012. Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 1–17.
  • [8] Brdar-Jokanović, M., Maksimović, I., Kraljević-Balalić, M., Zeremski-Škorić, T., Kondić-Špika, A., Kobiljski, B. 2013. Boron Concentration vs. Content as Criterion for Estimating Boron Tolerance in Wheat. Journal of Plant Nutrition, 36(3), 470-480.
  • [9] Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641–664.
  • [10] Miwa, K., Kamiya, T., Fujiwara, T. 2009. Homeostasis of the Structurally Important Micronutrients, B and Si. Current Opinion in Plant Biology, 12(3), 307-311.
  • [11] Ma, C.C., Li, Q.F., Gao, Y.B., Xin, T.R. 2004. Effects of Silicon Application on Drought Resistance of Cucumber Plants. Soil Science Plant Nutrition, 50, 623-632. [12] Güneş, A., Inal, A., Esra, G., Çoban, S. 2006. Silicon-Mediated Changes on Some Physiological and Enzymatic Parameters Symptomatic of Oxidative Stress in Barley Grown in Sodic-Boron Toxic Soil. Journal of Plant Physiology, 164(6) 807–811.
  • [13] Ahmed, M., Hassen, F., Khurshid, Y. 2011. Does Silicon and Irrigation Have Impact on Drought Tolerance Mechanism of Sorghum. Agricultural Water Management, 98, 1808-1812.
  • [14] Balakhnina, T.I., Matichenkov, V.V., Wodarczyk, T., Borkowska, A., Nosalewicz, M., Fomina, I.R. 2012. Effects of Silicon on Growth Processes and Adaptive Potential of Barley Plants Under Optimal Soil Watering and Flooding. Plant Growth Regulation, 1(67), 35-43.
  • [15] Jia-Wen, W. U., Yu, S. H. I., Yong-Xing, Z. H. U., Yi-Chao, W. A. N. G., Hai-Jun, G. O. N. G. (2013). Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere, 23(6), 815-825.
  • [16] Ma, J.F., Yamaji, N., 2005. Silicon Uptake and Accumulation in Higher Plants. Plant Science11, 5
  • [17] Epstein, E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155-160.
  • [18] Etesami, H., Jeong, B. R. 2018. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicology and Environmental Safety, 147, 881-896.
  • [19] Akcay, U. C., Erkan, I. E. 2016. Silicon induced Antioxidative Responses and Expression of BOR2 and Two PIP Family Aquaporin Genes in Barley Grown Under Boron Toxicity. Plant Molecular Biology Reporter, 34(1), 318-326.
  • [20] Hoagland, D.R., Arnon, D.I. 1950. The Water-Culture Method for Growing Plants Without Soil. California Agricultural Experiment Station, 347, 1-32.
  • [21] Smart, R.E., Bingham, G.E. 1974. Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260.
  • [22] Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999. Antisense Suppression of Proline Degradation Improves Tolerance to Freezing and Salinity in Arabidopsis thaliana. FEBS Letters, 461(3), 205–210.
  • [23] Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.
  • [24] Lichtenthaler, H. K., Wellburn, A. R. 1983. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochemical Society Transactions, 11(5), 591-592.
  • [25] Masood, S., Saleh, L., Witzel, K., Plieth, C., Mühling Karl, H. 2012. Determination of Oxidative Stress in wheat Leaves as Influenced by Boron Toxicity and NaCl Stress. Plant Physiology and Biochemistry, 56, 56-61.
  • [26] Karabal, E., Yucel, M., Oktem, H.A. 2003. Antioxidant Responses of Tolerant and Sensitive Barley Cultivars to Boron Toxicity. Plant Science, 164(6), 925–933
  • [27] Alpaslan, M., Gunes, A. 2001. Interactive Effects of Boron and Salinity Stress on the Growth, Membrane Permeability and Mineral Composition of Tomato and Cucumber Plants. Plant and Soil, 236(1), 123–128.
  • [28] Gunes, A., Inal, A., Bagci, E. G., Coban, S., Sahin, O. 2007. Silicon Increases Boron Tolerance and Reduces Oxidative Damage of Wheat Grown in Soil With Excess Boron. Biologia Plantarum, 51(3), 571-574.
  • [29] Gunes, A., Inal, A., Bagci, E. G., Coban, S. 2007. Silicon-mediated Changes on Some Physiological and Enzymatic Parameters Symptomatic of Oxidative Stress in Barley Grown in Sodic-B Toxic Soil. Journal of Plant Physiology, 164(6), 807-811.
  • [30] Soylemezoglu, G., Demir, K., Inal, A., Gunes, A. 2009. Effect of Silicon on Antioxidant and Stomatal Response of Two Grapevine (Vitis vinifera L.) Rootstocks Grown in Boron Toxic, Saline and Boron Toxic-Saline Soil. Scientia horticulturae, 123(2), 240-246.
  • [31] Reid, R. 2007. Update on Boron Toxicity and Tolerance in Plants. Proceedings of the 3rd International Symposium on all of Plant and Animal Boron Nutrition, 10-13 September, Wuhan, 83-90.
  • [32] Eraslan, F., Inal, A., Pilbeam, D. J., Gunes, A. 2008. Interactive Effects of Salicylic Acid and Silicon on Oxidative Damage and Antioxidant Activity in Spinach (Spinacia oleracea L. cv. Matador) Grown Under Boron Toxicity and Salinity. Plant Growth Regulation, 55(3), 207.
  • [33] Bakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., Ashraf, M. R., Shah, G. M., Rabbani, F., Saeed, S. 2018. Silicon Mitigates Biotic Stresses in Crop Plants: a review. Crop Protection, 104, 21-34.
  • [34] Etesami, H., Jeong, B. R. 2018. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicology and environmental safety, 147, 881-896.

Silisyum Uygulamasının Bor Stresi Altındaki Buğday Üzerindeki Etkisi

Year 2019, Volume: 23 Issue: 3, 743 - 747, 25.12.2019
https://doi.org/10.19113/sdufenbed.535286

Abstract

Bu araştırmada, bor (B) stresi altındaki buğday
bitkisinde farklı silisyum (Si) konsantrasyonlarının (0.75, 5, 10 mM) etkisi, doku
uzunluğu, malondialdehit (MDA), iyon sızıntısı, bağıl su içeriği (RWC) ve
toplam klorofil içeriği gibi bazı stres göstergeleri aracılığıyla
incelenmiştir. Silisyumun stres azaltıcı etkisi membran hasarının
iyileştirilmesi ile MDA ve iyon sızıntısı seviyelerinin pozitif düzenlenmesi
üzerinde gözlenmiştir. Bor (B) stresi nedeniyle gövde dokularında nekroz
meydana gelmesine rağmen silisyum uygulamasının sürgün ve kök uzunlukları
üzerinde önemli bir değişiklik gerçekleştirmediği gözlemlenmiştir. Ancak tam
aksine bağıl su içeriği (RWC), bor stresi altında silisyum uygulanması ile
pozitif olarak değişmiştir. Ayrıca silisyum ve bor stresinin (Si+B) birlikte
uygulandığı setlerde silisyum, bağıl su içeriğini kontrol bitkilerindeki
seviyelere kadar artırmaktadır. Toplam klorofil içeriği 0.75 ve 5 mM silisyum
varlığı ile artarken 10 mM silisyumun bor stresi altında klorofil içeriğine
herhangi bir etkisi olmamıştır. Genel olarak, silisyumun buğday üretiminde bor
stresini azaltıcı bir potansiyele sahip olduğu bulunmuştur.

References

  • [1] Herrera-Rodríguez, M. B., González-Fontes, A., Rexach, J., Camacho-Cristóbal, J. J., Maldonado, J. M., Navarro-Gochicoa, M. T. 2010. Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
  • [2] Kobayashi, M., Matoh, T., Azuma, J. 1996. Two Chains of Rhamnogalacturonan II are Cross-Linked by Borate-diol Ester Bonds in Higher Plant Cell Walls. Plant Physiology, 110, 1017-120.
  • [3] Schnurbusch, T., Hayes, J., Sutton, T. 2010. Boron Toxicity Tolerance in Wheat and Barley: Australian Perspectives. Breeding Science, 60, 297–304.
  • [4] Inal, A., Pilbeam, D. J., Gunes, A. 2009. Silicon Increases Tolerance to Boron Toxicity and Reduces Oxidative Damage in Barley. Journal of Plant Nutrition, 32(1), 112-128.
  • [5] Türe, C., Bell, R.W. 2004. Plant Distribution and its Relationship to Extractable Boron in Naturally Occurring High Boron Soils in Turkey. Israel Journal of Plant Science, 52, 125–132.
  • [6] Onthong, J., Yoajui, N., Kaewsichan, L. 2011. Alleviation of Plant Boron Toxicity by Using Water to Leach Boron from Soil Contaminated by Wastewater from Rubber Wood Factories. Science Asia, 37, 314–319.
  • [7] Cervilla, L. M., Blasco, J. J., Rios, M. A., Rosales, E., Sánchez-Rodríguez, M. M., Rubio-Wilhelmi, L., Romero, L., Ruiz, J. M. 2012. Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 1–17.
  • [8] Brdar-Jokanović, M., Maksimović, I., Kraljević-Balalić, M., Zeremski-Škorić, T., Kondić-Špika, A., Kobiljski, B. 2013. Boron Concentration vs. Content as Criterion for Estimating Boron Tolerance in Wheat. Journal of Plant Nutrition, 36(3), 470-480.
  • [9] Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641–664.
  • [10] Miwa, K., Kamiya, T., Fujiwara, T. 2009. Homeostasis of the Structurally Important Micronutrients, B and Si. Current Opinion in Plant Biology, 12(3), 307-311.
  • [11] Ma, C.C., Li, Q.F., Gao, Y.B., Xin, T.R. 2004. Effects of Silicon Application on Drought Resistance of Cucumber Plants. Soil Science Plant Nutrition, 50, 623-632. [12] Güneş, A., Inal, A., Esra, G., Çoban, S. 2006. Silicon-Mediated Changes on Some Physiological and Enzymatic Parameters Symptomatic of Oxidative Stress in Barley Grown in Sodic-Boron Toxic Soil. Journal of Plant Physiology, 164(6) 807–811.
  • [13] Ahmed, M., Hassen, F., Khurshid, Y. 2011. Does Silicon and Irrigation Have Impact on Drought Tolerance Mechanism of Sorghum. Agricultural Water Management, 98, 1808-1812.
  • [14] Balakhnina, T.I., Matichenkov, V.V., Wodarczyk, T., Borkowska, A., Nosalewicz, M., Fomina, I.R. 2012. Effects of Silicon on Growth Processes and Adaptive Potential of Barley Plants Under Optimal Soil Watering and Flooding. Plant Growth Regulation, 1(67), 35-43.
  • [15] Jia-Wen, W. U., Yu, S. H. I., Yong-Xing, Z. H. U., Yi-Chao, W. A. N. G., Hai-Jun, G. O. N. G. (2013). Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere, 23(6), 815-825.
  • [16] Ma, J.F., Yamaji, N., 2005. Silicon Uptake and Accumulation in Higher Plants. Plant Science11, 5
  • [17] Epstein, E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2), 155-160.
  • [18] Etesami, H., Jeong, B. R. 2018. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicology and Environmental Safety, 147, 881-896.
  • [19] Akcay, U. C., Erkan, I. E. 2016. Silicon induced Antioxidative Responses and Expression of BOR2 and Two PIP Family Aquaporin Genes in Barley Grown Under Boron Toxicity. Plant Molecular Biology Reporter, 34(1), 318-326.
  • [20] Hoagland, D.R., Arnon, D.I. 1950. The Water-Culture Method for Growing Plants Without Soil. California Agricultural Experiment Station, 347, 1-32.
  • [21] Smart, R.E., Bingham, G.E. 1974. Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260.
  • [22] Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999. Antisense Suppression of Proline Degradation Improves Tolerance to Freezing and Salinity in Arabidopsis thaliana. FEBS Letters, 461(3), 205–210.
  • [23] Ohkawa, H., Ohishi, N., Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.
  • [24] Lichtenthaler, H. K., Wellburn, A. R. 1983. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochemical Society Transactions, 11(5), 591-592.
  • [25] Masood, S., Saleh, L., Witzel, K., Plieth, C., Mühling Karl, H. 2012. Determination of Oxidative Stress in wheat Leaves as Influenced by Boron Toxicity and NaCl Stress. Plant Physiology and Biochemistry, 56, 56-61.
  • [26] Karabal, E., Yucel, M., Oktem, H.A. 2003. Antioxidant Responses of Tolerant and Sensitive Barley Cultivars to Boron Toxicity. Plant Science, 164(6), 925–933
  • [27] Alpaslan, M., Gunes, A. 2001. Interactive Effects of Boron and Salinity Stress on the Growth, Membrane Permeability and Mineral Composition of Tomato and Cucumber Plants. Plant and Soil, 236(1), 123–128.
  • [28] Gunes, A., Inal, A., Bagci, E. G., Coban, S., Sahin, O. 2007. Silicon Increases Boron Tolerance and Reduces Oxidative Damage of Wheat Grown in Soil With Excess Boron. Biologia Plantarum, 51(3), 571-574.
  • [29] Gunes, A., Inal, A., Bagci, E. G., Coban, S. 2007. Silicon-mediated Changes on Some Physiological and Enzymatic Parameters Symptomatic of Oxidative Stress in Barley Grown in Sodic-B Toxic Soil. Journal of Plant Physiology, 164(6), 807-811.
  • [30] Soylemezoglu, G., Demir, K., Inal, A., Gunes, A. 2009. Effect of Silicon on Antioxidant and Stomatal Response of Two Grapevine (Vitis vinifera L.) Rootstocks Grown in Boron Toxic, Saline and Boron Toxic-Saline Soil. Scientia horticulturae, 123(2), 240-246.
  • [31] Reid, R. 2007. Update on Boron Toxicity and Tolerance in Plants. Proceedings of the 3rd International Symposium on all of Plant and Animal Boron Nutrition, 10-13 September, Wuhan, 83-90.
  • [32] Eraslan, F., Inal, A., Pilbeam, D. J., Gunes, A. 2008. Interactive Effects of Salicylic Acid and Silicon on Oxidative Damage and Antioxidant Activity in Spinach (Spinacia oleracea L. cv. Matador) Grown Under Boron Toxicity and Salinity. Plant Growth Regulation, 55(3), 207.
  • [33] Bakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., Ashraf, M. R., Shah, G. M., Rabbani, F., Saeed, S. 2018. Silicon Mitigates Biotic Stresses in Crop Plants: a review. Crop Protection, 104, 21-34.
  • [34] Etesami, H., Jeong, B. R. 2018. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicology and environmental safety, 147, 881-896.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İbrahim Ertan Erkan 0000-0002-2815-412X

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Erkan, İ. E. (2019). Effect of Silicon Application on Wheat Under Boron Stress. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 743-747. https://doi.org/10.19113/sdufenbed.535286
AMA Erkan İE. Effect of Silicon Application on Wheat Under Boron Stress. SDÜ Fen Bil Enst Der. December 2019;23(3):743-747. doi:10.19113/sdufenbed.535286
Chicago Erkan, İbrahim Ertan. “Effect of Silicon Application on Wheat Under Boron Stress”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 743-47. https://doi.org/10.19113/sdufenbed.535286.
EndNote Erkan İE (December 1, 2019) Effect of Silicon Application on Wheat Under Boron Stress. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 743–747.
IEEE İ. E. Erkan, “Effect of Silicon Application on Wheat Under Boron Stress”, SDÜ Fen Bil Enst Der, vol. 23, no. 3, pp. 743–747, 2019, doi: 10.19113/sdufenbed.535286.
ISNAD Erkan, İbrahim Ertan. “Effect of Silicon Application on Wheat Under Boron Stress”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 743-747. https://doi.org/10.19113/sdufenbed.535286.
JAMA Erkan İE. Effect of Silicon Application on Wheat Under Boron Stress. SDÜ Fen Bil Enst Der. 2019;23:743–747.
MLA Erkan, İbrahim Ertan. “Effect of Silicon Application on Wheat Under Boron Stress”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 743-7, doi:10.19113/sdufenbed.535286.
Vancouver Erkan İE. Effect of Silicon Application on Wheat Under Boron Stress. SDÜ Fen Bil Enst Der. 2019;23(3):743-7.

e-ISSN: 1308-6529