Research Article
BibTex RIS Cite

Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul

Year 2019, Volume: 23 Issue: 3, 892 - 903, 25.12.2019
https://doi.org/10.19113/sdufenbed.555767

Abstract

Dunes are one of the most dynamic ecosystems in the
nature and they are considered as a special habitat type hosting valuable
genetic resources. Dunes located in Turkey are very rich in terms of plant
diversity. Istanbul has special place for the richness of endemic and rare
species in its dune vegetations. Biochemical characteristics of some plant
species growing in Istanbul dunes, which are under immense threat during the
recent years have been examined in the present study. Seed samples and aerial
parts of the plants have been analysed for fatty acid and amino acid
compositions. The higher concentrations of α-linolenic acid were quantified in Euphorbia paralias (48.24%) and Diplotaxis tenuifolia (24.47%). Linoleic
acid concentrations were detected at the higher levels in Xanthium strumarium (68.51%) and Otanthus maritimus (66.62%). Eryngium
campestre
(44.97%), Cyperus capitatus
(44.27%) and Eryngium maritimum
(41.88%) were found to have high oleic acid concentrations. 20,32% punicic acid  was detected in Ecballium elaterium. The higher concentrations of some essential
amino acids were observed in the seeds. Proline is the dominant amino acid in
the aerial parts of all taxa examined. Significant correlations between amino
acid concentrations were calculated. The data obtained in the present study
reveal that regarding plants as novel crops can be efficient for utilization in
biochemical and biotechnological applications in many fields such as human
nutrition, health and other industrial purposes.

References

  • [1] Khan, M. A., & Duke, N. C., 2001. Halophytes–A resource for the future. Wetlands Ecology and Management, 9(6), 455-456.
  • [2] Güvensen, A., 1995. General characteristics of halophytes and psammophytes in the Aegean region. Ege University, Institute of Sciences, Master’s Thesis, 98 p, İzmir.
  • [3] Özcan, T., 2014. Fatty acid composition of seed oils in some sand dune vegetation species from Turkey. Chemistry of natural compounds, 50(5), 804-809.
  • [4] Güvensen, A., Görk, G., & Öztürk, M., 2006. An overview of the halophytes in Turkey. pp 9-30. In Sabkha ecosystems. Springer, Dordrecht, 263 p.
  • [5] Khan, M. A., Böer, B., Kust, G. S., & Barth, H. J. (Eds.). 2008. Sabkha Ecosystems: Volume II: West and Central Asia (Vol. 42). Springer Science & Business Media, 263 p.
  • [6] Uslu, T., 1989. Geographical informations on Turkish coastal dunes. European Union for Dune Conservation and Coastal Management.
  • [7] Erinç, S., 2010. Jeomorfoloji II. Der Yayınevi, İstanbul, 496 p.
  • [8] Yaltırık, F., 1963. Belgrad Orman vejetasyonunun floristik analizi ve ana meşcere tiplerinin kompozisyonu üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi A, 13(1).
  • [9] Baytop, T., 2002. İstanbul Florası Araştırmaları, Eren Yayıncılık, İstanbul, 126 p.
  • [10] Akkemik, Ü., 2016. İstanbul'un Doğal Bitkileri.Çekül Vakfı Yayınları, İstanbul, 1152 p.
  • [11] Özhatay, N., Byfield, A., Atay, S., 2008. Pp 49-68. Türkiye'nin 122 önemli bitki alanı. WWF Türkiye (Doğal Hayatı Koruma Vakfı), İstanbul, 476 p.
  • [12] Byfield, A., & Özhatay, N., 1993. Türkiye’nin Kuzey Kumullarının Korunmasına Yönelik Rapor. Doğal Hayatı Koruma Derneği (DHKD) ve Fauna and Flora International (FFI).
  • [13] Özcan, T., 2016. Amino Acid Patterns in the Aerial Parts of Echium L. and Anchusa L. Growing in the Sand Dunes of Turkey. International Journal of Plant & Soil Science, 1-9.
  • [14] Hohn, M. E., & Meinschein, W. G., 1976. Seed oil fatty acids: evolutionary significance in the Nyssaceae and Cornaceae. Biochemical Systematics and Ecology, 4(3), 193-199.
  • [15] Aitzetmüller, K., Tsevegsüren, N., & Werner, G., 1999. Seed oil fatty acid patterns of the Aconitum-Delphinium-Helleborus complex (Ranunculaceae). Plant systematics and evolution, 215(1-4), 37-47.
  • [16] Velasco, L., & Goffman, F.D., 1999. Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry, 52(3), 423-426.
  • [17] Watson, L., & Creaser, E. H., 1975. Non-random variation of protein amino-acid profiles in grass seeds and dicot leaves. Phytochemistry, 14(5-6), 1211-1217.
  • [18] Yeoh, H. H., Wee, Y. C., & Watson, L., 1986. Taxonomic variation in total leaf protein amino acid compositions of monocotyledonous plants. Biochemical systematics and ecology, 14(1), 91-96.
  • [19] Özcan T., 2008. Fatty acid profiles of the seed oils in two groups of Anchusa officinalis L. IUFS J Biol 67(1):65–71
  • [20] Hawkes, J. G., 1968. Chemataxonomy and Serotaxonomy. Academic Press; New York; San Frncisco; London
  • [21] Özcan, T., 2006. Total protein and amino acid compositions in the acorns of Turkish Quercus L. taxa. Genetic Resources and Crop Evolution, 53(2), 419-429.
  • [22] Christensen, J. H., Skou, H. A., Fog, L., Hansen, V. E., Vesterlund, T., Dyerberg, J., & Schmidt, E. B., 2001. Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation, 103(5), 651-657.
  • [23] Davis, P. H., Mill, R. R., & Tan, K., 1965. Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh: Edinburgh University Pres, 1985.
  • [24] Davis, P.H., Miller, R.R., Tan, K., 1988. Flora o f Turkey and the East AegeanIslands. Vol. 10, Edinburgh Univ. Pres., Edinburgh.
  • [25] Paquot, C., & Hautfenne, A., 1979. Standard methods for the analysis of oils, fats and derivatives, IUPAC. App. Chern. Div., Commission on Oils Fats and Derivatives.
  • [26] Özcan, T., 2007. Characterization of Turkish Quercus L. taxa based on fatty acid compositions of the acorns. Journal of the American Oil Chemists' Society, 84(7), 653-662.
  • [27] Tookey, H. L., & Jones, Q., 1965. New sources of water-soluble seed gums. Economic Botany, 19(2), 165-174.
  • [28] Ahmad, F., Ahmad, M. U., Ahmad, I. A., Ansari, A. A., & Osman, S. M., 1978. Studies on herbaceous seed oils II. Fette, Seifen, Anstrichmittel, 80(5), 190-192.
  • [29] Lotti, G., & Galoppini, C., 1965. La natura dei lipidi presenti negli organi germinativi e nei tessuti di riserva dei semi. Volume, 42, 289-297.
  • [30] Saastamoinen, M., Kumpulainen, J., & Nummela, S., 1989. Genetic and enviromental variation in oil content and fatty acid composition of oats. Cereal Chem, 66(4), 296-300.
  • [31] Osman, R. O., El-Gelil, F. A., El-Noamany, H. M., & Dawood, M. G., 2000. Oil content and fatty acid composition of some varieties of barley and sorghum grains. Grasas y aceites, 51(3), 157-162.
  • [32] Kurban, S., & Mehmetoğlu, İ., 2006. Konjuge linoleik asit metabolizması ve fizyolojik etkileri. Türk Klinik Biyokimya Dergisi, 4(2), 89-100.
  • [33] Nettleton, J. A., 2000. Seafood Nutrition in The 1990’s İssues for The Consumer. Seafood Science and Technology, Chepter, 4, 32-39.
  • [34] Kaya, Y., Duyar, H. A., Erdem, M. E., 2004. Balık yağ asitlerinin insan sağlığı için önemi. Ege Üniversitesi Su Ürünleri Dergisi, 21(3),365-370.
  • [35] Weber, D. J., Ansari, R., Gul, B., & Khan, M. A., 2007. Potential of halophytes as source of edible oil. Journal of Arid Environments, 68(2), 315-321.
  • [36] Morlok, K. M., 2010. Food scientist’s guide to fats and oils for margarine and spreads development. Kansas State University Food Science, Manhattan, Kansas, USA, 82 p.
  • [37] Duru, S., & Konuşkan, D. B., 2014. Bitkisel Yağlarda Oleik Asit Miktarının Arttırılması ve Yağ Kalitesi Üzerine Etkileri. Gıda/The Journal Of Food, 39(6), 379-385.
  • [38] Lopez-Huertas, E., 2010. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological research, 61(3), 200-207
  • [39] Chisholm, M. J., & Hopkins, C. Y., 1964. Fatty acid composition of some Cucurbitaceae seed oils. Canadian Journal of Chemistry, 42(3), 560-564.
  • [40] Touihri, I., Kallech-Ziri, O., Boulila, A., Fatnassi, S., Marrakchi, N., Luis, J., & Hanchi, B., 2015. Ecballium elaterium (L.) A. Rich. seed oil: Chemical composition and antiproliferative effect on human colonic adenocarcinoma and fibrosarcoma cancer cell lines. Arabian Journal of Chemistry.
  • [41] Vroegrijk, I. O., van Diepen, J. A., van den Berg, S., Westbroek, I., Keizer, H., Gambelli, L.,& Havekes, L. M., 2011. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology, 49(6), 1426-1430.
  • [42] Grossmann, M. E., Mizuno, N. K., Schuster, T., & Cleary, M. P., 2010. Punicic acid is an ω-5 fatty acid capable of inhibiting breast cancer proliferation. International journal of oncology, 36(2), 421-426.
  • [43] Erik, S., 2012. Çok yönlü ruderal bir tür: Diplotaxis tenuifolia (L) DC. AÜ Çevr. Derg, 4, 27-35.
  • [44] Appelqvist, L. A., 1971. Lipids in Cruciferae: VIII. The fatty acid composition of seeds of some wild or partially domesticated species. Journal of the American Oil Chemists' Society, 48(11), 740-744.
  • [45] Mutlu, V. N., & Yilmaz, S. 2016. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Applied Catalysis A: General, 522, 194-200.
  • [46] Pedo, I., Sgarbieri, V. C., & Gutkoski, L. C., 1999. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil. Plant Foods for Human Nutrition, 53(4), 297-304.
  • [47] Asensio, M. L., Valdés, E., & Cabello, F., 2002. Characterisation of some Spanish white grapevine cultivars by morphology and amino acid analysis. Scientia Horticulturae, 93(3-4), 289-299.
  • [48] Çelik, Ö., & Atak, Ç., 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology, 36(3), 339-356
  • [49] Ashraf, M. F. M. R., & Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216.
  • [50] Cha-um, S., & Kirdmanee, C., 2010. Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.). New forests, 40(3), 349-360.
  • [51] Hsu, S. Y., Hsu, Y. T., & Kao, C. H., 2003. The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia Plantarum, 46(1), 73-78.
  • [52] Öztürk, M., Türkyilmaz, B., Gücel, S., Güvensen, A., 2011. Proline accumulation in some coastal zone plants of the Aegean region of Turkey. American Journal of Botany, 66(3), 307-312
  • [53] Stewart, G. R., & Lee, J. A., 1974. The role of proline accumulation in halophytes. Planta, 120(3), 279-289.
  • [54] Yakıt, S., & Tuna, A. L., 2006. Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’nın etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 59-67.
  • [55] Amer, W. M., & Sheded, M., 1998. Relationships within genus Senna in Egypt, based on variations in protein, free amino acid and rapd markers. Journal of Union Arab of Biologists, 6, 47-62.
  • [56] Llanes, A., Bertazza, G., Palacio, G., & Luna, V., 2013. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biology, 15, 118-125.
  • [57] Lee, Y. K., Lee, Y. S., & Jung, E. K., 2010. A Study of the Chemical Components of the Halophyte Suaeda asparagoides MIQ. Journal of the East Asian Society of Dietary Life, 20(3),452-457.
  • [58] Joint, F. A. O., & World Health Organization. 1985. Energy and protein requirements: report of a Joint FAO/WHO/UNU Expert Consultation [held in Rome from 5 to 17 October 1981].

İstanbul’daki Bazı Kumul Bitkilerinde Yağ Asidi ve Amino Asit Profilleri

Year 2019, Volume: 23 Issue: 3, 892 - 903, 25.12.2019
https://doi.org/10.19113/sdufenbed.555767

Abstract

Kumullar, doğadaki en dinamik ekosistemlerden biridir
ve değerli genetik kaynakları barındıran özel bir yaşam alanı türü olarak kabul
edilirler. Türkiye'de bulunan kumul alanlar bitki çeşitliliği açısından oldukça
zengindir. İstanbul kumul bitkileri de endemik ve nadir türlerin zenginliği
açısından özel bir yere sahiptir. Bu çalışmada, İstanbul kumullarında yetişen
ve son yıllarda büyük tehdit altında olan bazı bitki türlerinin biyokimyasal
özellikleri incelenmiştir. Tohum örneklerinde ve bitkilerin toprak üstü sürgün
kısımlarında yağ asidi ve amino asit bileşimleri analiz edilmiştir. Euphorbia paralias (%48.24) ve Diplotaxis tenuifolia (%24.47)
türlerinde yüksek a-linolenik asit konsantrasyonları ölçülmüştür. Xanthium strumarium (%68.51) ve Otanthus maritimus (%66.62) 'da yüksek
linoleik asit düzeyleri tespit edilmiştir. Eryngium
campestre
(%44.97), Cyperus capitatus
(%44.27) ve Eryngium maritimum
(%41.88) yüksek oleik asit içeriklerine sahiptir. Ecballium elaterium’da %20,32 oranında punisik asit saptanmıştır.
Taksonların  tohumlarında bazı esansiyel
amino asitlere yüksek düzeylerde rastlanmıştır. 
Prolin, incelenen tüm taksonların toprak üstü sürgünlerinde baskın olan
amino asittir. Amino asit konsantrasyonları arasında anlamlı korelasyonlar
gözlemlenmiştir (p<0.05). Elde edilen veriler, söz konusu taksonların yeni
ürünler olarak beslenme, sağlık ve diğer endüstriyel alanlardaki biyokimyasal
ve biyoteknolojik uygulamalarda kullanılabileceğini ortaya koymaktadır.

References

  • [1] Khan, M. A., & Duke, N. C., 2001. Halophytes–A resource for the future. Wetlands Ecology and Management, 9(6), 455-456.
  • [2] Güvensen, A., 1995. General characteristics of halophytes and psammophytes in the Aegean region. Ege University, Institute of Sciences, Master’s Thesis, 98 p, İzmir.
  • [3] Özcan, T., 2014. Fatty acid composition of seed oils in some sand dune vegetation species from Turkey. Chemistry of natural compounds, 50(5), 804-809.
  • [4] Güvensen, A., Görk, G., & Öztürk, M., 2006. An overview of the halophytes in Turkey. pp 9-30. In Sabkha ecosystems. Springer, Dordrecht, 263 p.
  • [5] Khan, M. A., Böer, B., Kust, G. S., & Barth, H. J. (Eds.). 2008. Sabkha Ecosystems: Volume II: West and Central Asia (Vol. 42). Springer Science & Business Media, 263 p.
  • [6] Uslu, T., 1989. Geographical informations on Turkish coastal dunes. European Union for Dune Conservation and Coastal Management.
  • [7] Erinç, S., 2010. Jeomorfoloji II. Der Yayınevi, İstanbul, 496 p.
  • [8] Yaltırık, F., 1963. Belgrad Orman vejetasyonunun floristik analizi ve ana meşcere tiplerinin kompozisyonu üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi A, 13(1).
  • [9] Baytop, T., 2002. İstanbul Florası Araştırmaları, Eren Yayıncılık, İstanbul, 126 p.
  • [10] Akkemik, Ü., 2016. İstanbul'un Doğal Bitkileri.Çekül Vakfı Yayınları, İstanbul, 1152 p.
  • [11] Özhatay, N., Byfield, A., Atay, S., 2008. Pp 49-68. Türkiye'nin 122 önemli bitki alanı. WWF Türkiye (Doğal Hayatı Koruma Vakfı), İstanbul, 476 p.
  • [12] Byfield, A., & Özhatay, N., 1993. Türkiye’nin Kuzey Kumullarının Korunmasına Yönelik Rapor. Doğal Hayatı Koruma Derneği (DHKD) ve Fauna and Flora International (FFI).
  • [13] Özcan, T., 2016. Amino Acid Patterns in the Aerial Parts of Echium L. and Anchusa L. Growing in the Sand Dunes of Turkey. International Journal of Plant & Soil Science, 1-9.
  • [14] Hohn, M. E., & Meinschein, W. G., 1976. Seed oil fatty acids: evolutionary significance in the Nyssaceae and Cornaceae. Biochemical Systematics and Ecology, 4(3), 193-199.
  • [15] Aitzetmüller, K., Tsevegsüren, N., & Werner, G., 1999. Seed oil fatty acid patterns of the Aconitum-Delphinium-Helleborus complex (Ranunculaceae). Plant systematics and evolution, 215(1-4), 37-47.
  • [16] Velasco, L., & Goffman, F.D., 1999. Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry, 52(3), 423-426.
  • [17] Watson, L., & Creaser, E. H., 1975. Non-random variation of protein amino-acid profiles in grass seeds and dicot leaves. Phytochemistry, 14(5-6), 1211-1217.
  • [18] Yeoh, H. H., Wee, Y. C., & Watson, L., 1986. Taxonomic variation in total leaf protein amino acid compositions of monocotyledonous plants. Biochemical systematics and ecology, 14(1), 91-96.
  • [19] Özcan T., 2008. Fatty acid profiles of the seed oils in two groups of Anchusa officinalis L. IUFS J Biol 67(1):65–71
  • [20] Hawkes, J. G., 1968. Chemataxonomy and Serotaxonomy. Academic Press; New York; San Frncisco; London
  • [21] Özcan, T., 2006. Total protein and amino acid compositions in the acorns of Turkish Quercus L. taxa. Genetic Resources and Crop Evolution, 53(2), 419-429.
  • [22] Christensen, J. H., Skou, H. A., Fog, L., Hansen, V. E., Vesterlund, T., Dyerberg, J., & Schmidt, E. B., 2001. Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation, 103(5), 651-657.
  • [23] Davis, P. H., Mill, R. R., & Tan, K., 1965. Flora of Turkey and the East Aegean Islands. Vol. 1-9. Edinburgh: Edinburgh University Pres, 1985.
  • [24] Davis, P.H., Miller, R.R., Tan, K., 1988. Flora o f Turkey and the East AegeanIslands. Vol. 10, Edinburgh Univ. Pres., Edinburgh.
  • [25] Paquot, C., & Hautfenne, A., 1979. Standard methods for the analysis of oils, fats and derivatives, IUPAC. App. Chern. Div., Commission on Oils Fats and Derivatives.
  • [26] Özcan, T., 2007. Characterization of Turkish Quercus L. taxa based on fatty acid compositions of the acorns. Journal of the American Oil Chemists' Society, 84(7), 653-662.
  • [27] Tookey, H. L., & Jones, Q., 1965. New sources of water-soluble seed gums. Economic Botany, 19(2), 165-174.
  • [28] Ahmad, F., Ahmad, M. U., Ahmad, I. A., Ansari, A. A., & Osman, S. M., 1978. Studies on herbaceous seed oils II. Fette, Seifen, Anstrichmittel, 80(5), 190-192.
  • [29] Lotti, G., & Galoppini, C., 1965. La natura dei lipidi presenti negli organi germinativi e nei tessuti di riserva dei semi. Volume, 42, 289-297.
  • [30] Saastamoinen, M., Kumpulainen, J., & Nummela, S., 1989. Genetic and enviromental variation in oil content and fatty acid composition of oats. Cereal Chem, 66(4), 296-300.
  • [31] Osman, R. O., El-Gelil, F. A., El-Noamany, H. M., & Dawood, M. G., 2000. Oil content and fatty acid composition of some varieties of barley and sorghum grains. Grasas y aceites, 51(3), 157-162.
  • [32] Kurban, S., & Mehmetoğlu, İ., 2006. Konjuge linoleik asit metabolizması ve fizyolojik etkileri. Türk Klinik Biyokimya Dergisi, 4(2), 89-100.
  • [33] Nettleton, J. A., 2000. Seafood Nutrition in The 1990’s İssues for The Consumer. Seafood Science and Technology, Chepter, 4, 32-39.
  • [34] Kaya, Y., Duyar, H. A., Erdem, M. E., 2004. Balık yağ asitlerinin insan sağlığı için önemi. Ege Üniversitesi Su Ürünleri Dergisi, 21(3),365-370.
  • [35] Weber, D. J., Ansari, R., Gul, B., & Khan, M. A., 2007. Potential of halophytes as source of edible oil. Journal of Arid Environments, 68(2), 315-321.
  • [36] Morlok, K. M., 2010. Food scientist’s guide to fats and oils for margarine and spreads development. Kansas State University Food Science, Manhattan, Kansas, USA, 82 p.
  • [37] Duru, S., & Konuşkan, D. B., 2014. Bitkisel Yağlarda Oleik Asit Miktarının Arttırılması ve Yağ Kalitesi Üzerine Etkileri. Gıda/The Journal Of Food, 39(6), 379-385.
  • [38] Lopez-Huertas, E., 2010. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological research, 61(3), 200-207
  • [39] Chisholm, M. J., & Hopkins, C. Y., 1964. Fatty acid composition of some Cucurbitaceae seed oils. Canadian Journal of Chemistry, 42(3), 560-564.
  • [40] Touihri, I., Kallech-Ziri, O., Boulila, A., Fatnassi, S., Marrakchi, N., Luis, J., & Hanchi, B., 2015. Ecballium elaterium (L.) A. Rich. seed oil: Chemical composition and antiproliferative effect on human colonic adenocarcinoma and fibrosarcoma cancer cell lines. Arabian Journal of Chemistry.
  • [41] Vroegrijk, I. O., van Diepen, J. A., van den Berg, S., Westbroek, I., Keizer, H., Gambelli, L.,& Havekes, L. M., 2011. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology, 49(6), 1426-1430.
  • [42] Grossmann, M. E., Mizuno, N. K., Schuster, T., & Cleary, M. P., 2010. Punicic acid is an ω-5 fatty acid capable of inhibiting breast cancer proliferation. International journal of oncology, 36(2), 421-426.
  • [43] Erik, S., 2012. Çok yönlü ruderal bir tür: Diplotaxis tenuifolia (L) DC. AÜ Çevr. Derg, 4, 27-35.
  • [44] Appelqvist, L. A., 1971. Lipids in Cruciferae: VIII. The fatty acid composition of seeds of some wild or partially domesticated species. Journal of the American Oil Chemists' Society, 48(11), 740-744.
  • [45] Mutlu, V. N., & Yilmaz, S. 2016. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Applied Catalysis A: General, 522, 194-200.
  • [46] Pedo, I., Sgarbieri, V. C., & Gutkoski, L. C., 1999. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil. Plant Foods for Human Nutrition, 53(4), 297-304.
  • [47] Asensio, M. L., Valdés, E., & Cabello, F., 2002. Characterisation of some Spanish white grapevine cultivars by morphology and amino acid analysis. Scientia Horticulturae, 93(3-4), 289-299.
  • [48] Çelik, Ö., & Atak, Ç., 2012. The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties. Turkish Journal of Biology, 36(3), 339-356
  • [49] Ashraf, M. F. M. R., & Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216.
  • [50] Cha-um, S., & Kirdmanee, C., 2010. Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.). New forests, 40(3), 349-360.
  • [51] Hsu, S. Y., Hsu, Y. T., & Kao, C. H., 2003. The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia Plantarum, 46(1), 73-78.
  • [52] Öztürk, M., Türkyilmaz, B., Gücel, S., Güvensen, A., 2011. Proline accumulation in some coastal zone plants of the Aegean region of Turkey. American Journal of Botany, 66(3), 307-312
  • [53] Stewart, G. R., & Lee, J. A., 1974. The role of proline accumulation in halophytes. Planta, 120(3), 279-289.
  • [54] Yakıt, S., & Tuna, A. L., 2006. Tuz stresi altındaki mısır bitkisinde (Zea mays L.) stres parametreleri üzerine Ca, Mg ve K’nın etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 59-67.
  • [55] Amer, W. M., & Sheded, M., 1998. Relationships within genus Senna in Egypt, based on variations in protein, free amino acid and rapd markers. Journal of Union Arab of Biologists, 6, 47-62.
  • [56] Llanes, A., Bertazza, G., Palacio, G., & Luna, V., 2013. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biology, 15, 118-125.
  • [57] Lee, Y. K., Lee, Y. S., & Jung, E. K., 2010. A Study of the Chemical Components of the Halophyte Suaeda asparagoides MIQ. Journal of the East Asian Society of Dietary Life, 20(3),452-457.
  • [58] Joint, F. A. O., & World Health Organization. 1985. Energy and protein requirements: report of a Joint FAO/WHO/UNU Expert Consultation [held in Rome from 5 to 17 October 1981].
There are 58 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Samet Taç 0000-0002-7817-5906

Tamer Özcan 0000-0002-1843-4697

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Taç, S., & Özcan, T. (2019). Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 892-903. https://doi.org/10.19113/sdufenbed.555767
AMA Taç S, Özcan T. Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul. J. Nat. Appl. Sci. December 2019;23(3):892-903. doi:10.19113/sdufenbed.555767
Chicago Taç, Samet, and Tamer Özcan. “Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 892-903. https://doi.org/10.19113/sdufenbed.555767.
EndNote Taç S, Özcan T (December 1, 2019) Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 892–903.
IEEE S. Taç and T. Özcan, “Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul”, J. Nat. Appl. Sci., vol. 23, no. 3, pp. 892–903, 2019, doi: 10.19113/sdufenbed.555767.
ISNAD Taç, Samet - Özcan, Tamer. “Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 892-903. https://doi.org/10.19113/sdufenbed.555767.
JAMA Taç S, Özcan T. Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul. J. Nat. Appl. Sci. 2019;23:892–903.
MLA Taç, Samet and Tamer Özcan. “Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 892-03, doi:10.19113/sdufenbed.555767.
Vancouver Taç S, Özcan T. Fatty Acid and Amino Acid Profiles in Some Dune Vegetation Species from Istanbul. J. Nat. Appl. Sci. 2019;23(3):892-903.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.