Research Article
BibTex RIS Cite

The Evolution of Atomic Structure of the Zr48Cu36Ag8Al8 Bulk Metallic Glass in the Rapid Cooling Process

Year 2019, Volume: 23 Issue: 3, 954 - 962, 25.12.2019
https://doi.org/10.19113/sdufenbed.566570

Abstract

In our study, atomic structure and glass formation
process of Zr48Cu36Al8Ag8
quaternary alloy was investigated by molecular dynamic simulation using
embedded atom method.
The average volume-temperature curve, the pair
distribution function (PDF) and the pair analysis method were used to
investigate the glass transition process and the atomic structure development
depending on the temperature. The total PDF, g(r), calculated at 300 K is in
good agreement with previously reported experimental g(r).
On the other hand, the
glass transition temperature determined by using the average volume-temperature
graph is close to that achieved with experimental works.
The peaks of the partial
PDFs of the Zr-Zr and Cu-Cu pairs inhibit a normal upward trend due to the
temperature drop, whereas the peaks of the Al-Al and Ag-Ag pairs exhibit an
abnormal behavior by producing very high peaks.
The reason for this
behavior was the aggregation of Al and Ag atoms in the simulation cell. When
the microstructure of the system was examined, it was observed that the 1431,
1541 and 1551 bonded pairs which are indicative of the short range order were
dominant in all temperatures. The increase in the fraction of the 1551 bonded
pairs, which represent the ideal icosahedral order together with the decreasing
temperature, shows that the short range order of the system continues to
develop and increase.

References

  • [1] Karasu B., Yanar A. O., Erdoğan O., Kartal S., Ak G., Pirangil S. E. 2017. Metallic Glasses,. Şişe Cam Technical Bulletin, 45(2(231)), 5-17.
  • [2] Ozdemir Kart S., Tomak M., Uludogan M., Cagin T. 2006. Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys, Materials Science and Engineering A, 435–436, 736–744.
  • [3] Xu J., Xiang M., Dang B., Jian Z. 2017. Relation of cooling rate, undercooling and structure for rapid solidification of iron melt, Computational Materials Science, 128, 98–102.
  • [4] Qi Y., Cagin T., Kimura Y., Goddard III W. A. 1991. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Phys. Rev. B, 59(5), 3527–3533.
  • [5] Dalgic S. S. S., Celtek M. 2011. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation, Journal of Optoelectronics and Advanced Materials, 13(11–12), 1563–1569.
  • [6] Inoue A., Kita K., Zhang T., Masumoto T. 1989. An Amorphous La55AI25Ni20 Alloy Prepared by Water Quenching, Materials Transactions, 30(09), 722-725.
  • [7] Inoue A. 2015. Bulk Glassy Alloys: Historical Development and Current Research, Engineering, 1(2), 185–191.
  • [8] Zhong L., Wang J., Sheng H., Zhang Z., Mao S. X. 2014. Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature, 512(7513), 177–80.
  • [9] Inoue A., Takeuchi A. 2011. Recent development and application products of bulk glassy alloys, Acta Materialia, 59(6), 2243–2267.
  • [10] Chen H. . 1974. Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metallurgica, 22(12), 1505–1511.
  • [11] Inoue A. 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48(1), 279–306.
  • [12] Wang W. H., Dong C., Shek C. H. 2004. Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44(2–3), 45–89.
  • [13] Johnson W. L. 1996. Bulk metallic glasses - A new engineering material, Current Opinion in Solid State and Materials Science, 1(3), 383–385.
  • [14] Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, The European Physical Journal B, 89(3), 1–6.
  • [15] Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy, Vacuum, 136, 20–27.
  • [16] Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations,. Philosophical Magazine, 98(9), 783-802.
  • [17] Zhang Q., Zhang W., Inoue A. 2006. New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5cm, Scripta Materialia, 55(8), 711–713.
  • [18] Zhang Q., Zhang W., Inoue A. 2007. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting, Materials Transactions, 48(3), 629–631.
  • [19] Smith W., Forester T. R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, 14(3), 136–141.
  • [20] Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods,. The Journal of Chemical Physics, 81(1), 511–519.
  • [21] Zhou X. W., Johnson R. A., Wadley H. N. G. 2004. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69(14), 144113.
  • [22] Daw M. S., Baskes M. I. 1984. Embedded atom method: derivation and application to impurities, surfaces and other defects in metal, Phsical Review B, 29(12), 6443–6453.
  • [23] Celtek M., Sengul S. 2019. Effects of the cooling rate on the atomic structure and the glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations, Turkish Journal of Physics, 43, 11 – 25.
  • [24] Celtek M., Domekeli U., Sengul S. 2019. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması (Investigation of the Effect of Interatomic Potential on the Structural Development, BEU Journal of Science, 8(2), 413-427.
  • [25] Honeycutt J. D., Andersen H. C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters, Journal of Physical Chemistry, 91(24), 4950–4963.
  • [26] Celtek M., Sengul S. 2018. Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: Molecular dynamics simulations, Journal of Non-Crystalline Solids, 498, 32–41.
  • [27] Zhang Q., Zhang W., Inoue A. 2008. Unusual Glass-Forming Ability of New Zr-Cu-Based Bulk Glassy Alloys Containing an Immiscible Element Pair, Materials Transactions, 49(11), 2743–2746.
  • [28] Tang R., Zhou B., Ma Y., Jia F., Zhang X. 2015. Numerical Simulation of Zr-based Bulk Metallic Glass During Continuous Casting Solidification Process, Materials Research, 18(suppl 1), 3–9.
  • [29] Xu Y., Yu M., Xu R., Wang X., Wang Z., Liang Y., Lin J. 2016. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass, Metals, 6(10), 240.
  • [30] Ward L., Agrawal A., Flores K. M., Windl W. 2012. Rapid Production of Accurate Embedded-Atom Method Potentials for Metal Alloys, Materials Science; Computational Physics, 12(09), 0619.
  • [31] Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50-xAlxbulk metallic glasses investigated by molecular dynamics simulations, Intermetallics, 84, 62–73.
  • [32] Celik F. A., Kazanc S. 2013. Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation, Physica B: Condensed Matter, 409(1), 63–70.
  • [33] Celik F. A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions, Physics Letters A, 378(30–31), 2151–2156.
  • [34] Voronoi G. 1908. New Parametric Applications Concerning the Theory of Quadratic Forms - Second Announcement,. J. Reine Angew. Math, 134, 198–287.
  • [35] Doye J. P. K., Wales D. J. 1996. The Structure and Stability of Atomic Liquids: From Clusters to Bulk, Science, 271(5248), 484–487.

Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi

Year 2019, Volume: 23 Issue: 3, 954 - 962, 25.12.2019
https://doi.org/10.19113/sdufenbed.566570

Abstract

Çalışmamızda Zr48Cu36Al8Ag8
dörtlü alaşımının atomik yapısı ve cam oluşturma süreci moleküler dinamik
simülasyon ile gömülü atom metodu kullanılarak araştırıldı. Cam geçiş sürecini
ve sıcaklığa bağlı atomik yapı gelişimini araştırmak için ortalama
hacim-sıcaklık eğrisi, çiftler dağılım fonksiyonu (PDF) ve çift analiz metodu
kullanıldı. 300 K’de hesaplanan toplam PDF, g(r),
daha önce rapor edilen deneysel g(r)
ile iyi bir uyum sağlamaktadır. Öte yandan ortalama hacim-sıcaklık grafiğinden
yararlanılarak belirlenen cam geçiş sıcaklığı da deneysel değerlerle
birbirlerine yakındır. Zr-Zr ve Cu-Cu çiftlerinin kısmi PDF'lerin pikleri
sıcaklık düşüşüne bağlı olarak normal bir artış eğilimi gösterirken, Al-Al ve
Ag-Ag çiftleri ise çok yüksek pikler üreterek anormal bir davranış
sergilemektedir. Bu davranışın nedeninin simülasyon hücresindeki Al ve Ag
atomlarının topaklanması olduğu görülmüştür. Sistemin mikro yapısı
incelendiğinde ise kısa menzil düzenin göstergesi olan 1431, 1541 ve 1551 bağlı
çiftlerinin bütün sıcaklıklarda baskın olduğu gözlenmiştir. Azalan sıcaklıkla
birlikte özellikle ideal ikosahedral düzeni temsil eden 1551 bağlı çiftlerinin
oranının artması sistemin kısa menzil düzeninin gelişerek artmaya devam
ettiğini göstermektedir. 

Thanks

Çalışmanın tartışma sürecinde eşsiz ve faydalı fikirlerini bizimle paylaşan Dr. Cem CANAN ve Dr. Mutlu ÇOLAKOĞULLARI’na teşekkürü borç biliriz. Ayrıca bu çalışmanın yapılabilmesi için gerekli ortamı sağlayan Trakya Üniversitesi Eğitim Fakültesine teşekkür ederiz.

References

  • [1] Karasu B., Yanar A. O., Erdoğan O., Kartal S., Ak G., Pirangil S. E. 2017. Metallic Glasses,. Şişe Cam Technical Bulletin, 45(2(231)), 5-17.
  • [2] Ozdemir Kart S., Tomak M., Uludogan M., Cagin T. 2006. Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys, Materials Science and Engineering A, 435–436, 736–744.
  • [3] Xu J., Xiang M., Dang B., Jian Z. 2017. Relation of cooling rate, undercooling and structure for rapid solidification of iron melt, Computational Materials Science, 128, 98–102.
  • [4] Qi Y., Cagin T., Kimura Y., Goddard III W. A. 1991. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Phys. Rev. B, 59(5), 3527–3533.
  • [5] Dalgic S. S. S., Celtek M. 2011. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation, Journal of Optoelectronics and Advanced Materials, 13(11–12), 1563–1569.
  • [6] Inoue A., Kita K., Zhang T., Masumoto T. 1989. An Amorphous La55AI25Ni20 Alloy Prepared by Water Quenching, Materials Transactions, 30(09), 722-725.
  • [7] Inoue A. 2015. Bulk Glassy Alloys: Historical Development and Current Research, Engineering, 1(2), 185–191.
  • [8] Zhong L., Wang J., Sheng H., Zhang Z., Mao S. X. 2014. Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature, 512(7513), 177–80.
  • [9] Inoue A., Takeuchi A. 2011. Recent development and application products of bulk glassy alloys, Acta Materialia, 59(6), 2243–2267.
  • [10] Chen H. . 1974. Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metallurgica, 22(12), 1505–1511.
  • [11] Inoue A. 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48(1), 279–306.
  • [12] Wang W. H., Dong C., Shek C. H. 2004. Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44(2–3), 45–89.
  • [13] Johnson W. L. 1996. Bulk metallic glasses - A new engineering material, Current Opinion in Solid State and Materials Science, 1(3), 383–385.
  • [14] Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, The European Physical Journal B, 89(3), 1–6.
  • [15] Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy, Vacuum, 136, 20–27.
  • [16] Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations,. Philosophical Magazine, 98(9), 783-802.
  • [17] Zhang Q., Zhang W., Inoue A. 2006. New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5cm, Scripta Materialia, 55(8), 711–713.
  • [18] Zhang Q., Zhang W., Inoue A. 2007. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting, Materials Transactions, 48(3), 629–631.
  • [19] Smith W., Forester T. R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, 14(3), 136–141.
  • [20] Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods,. The Journal of Chemical Physics, 81(1), 511–519.
  • [21] Zhou X. W., Johnson R. A., Wadley H. N. G. 2004. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69(14), 144113.
  • [22] Daw M. S., Baskes M. I. 1984. Embedded atom method: derivation and application to impurities, surfaces and other defects in metal, Phsical Review B, 29(12), 6443–6453.
  • [23] Celtek M., Sengul S. 2019. Effects of the cooling rate on the atomic structure and the glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations, Turkish Journal of Physics, 43, 11 – 25.
  • [24] Celtek M., Domekeli U., Sengul S. 2019. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması (Investigation of the Effect of Interatomic Potential on the Structural Development, BEU Journal of Science, 8(2), 413-427.
  • [25] Honeycutt J. D., Andersen H. C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters, Journal of Physical Chemistry, 91(24), 4950–4963.
  • [26] Celtek M., Sengul S. 2018. Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: Molecular dynamics simulations, Journal of Non-Crystalline Solids, 498, 32–41.
  • [27] Zhang Q., Zhang W., Inoue A. 2008. Unusual Glass-Forming Ability of New Zr-Cu-Based Bulk Glassy Alloys Containing an Immiscible Element Pair, Materials Transactions, 49(11), 2743–2746.
  • [28] Tang R., Zhou B., Ma Y., Jia F., Zhang X. 2015. Numerical Simulation of Zr-based Bulk Metallic Glass During Continuous Casting Solidification Process, Materials Research, 18(suppl 1), 3–9.
  • [29] Xu Y., Yu M., Xu R., Wang X., Wang Z., Liang Y., Lin J. 2016. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass, Metals, 6(10), 240.
  • [30] Ward L., Agrawal A., Flores K. M., Windl W. 2012. Rapid Production of Accurate Embedded-Atom Method Potentials for Metal Alloys, Materials Science; Computational Physics, 12(09), 0619.
  • [31] Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50-xAlxbulk metallic glasses investigated by molecular dynamics simulations, Intermetallics, 84, 62–73.
  • [32] Celik F. A., Kazanc S. 2013. Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation, Physica B: Condensed Matter, 409(1), 63–70.
  • [33] Celik F. A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions, Physics Letters A, 378(30–31), 2151–2156.
  • [34] Voronoi G. 1908. New Parametric Applications Concerning the Theory of Quadratic Forms - Second Announcement,. J. Reine Angew. Math, 134, 198–287.
  • [35] Doye J. P. K., Wales D. J. 1996. The Structure and Stability of Atomic Liquids: From Clusters to Bulk, Science, 271(5248), 484–487.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Çeltek 0000-0001-7737-0411

Sedat Şengül 0000-0003-2690-9354

Ünal Dömekeli 0000-0003-1469-2602

Publication Date December 25, 2019
Published in Issue Year 2019 Volume: 23 Issue: 3

Cite

APA Çeltek, M., Şengül, S., & Dömekeli, Ü. (2019). Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 954-962. https://doi.org/10.19113/sdufenbed.566570
AMA Çeltek M, Şengül S, Dömekeli Ü. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. J. Nat. Appl. Sci. December 2019;23(3):954-962. doi:10.19113/sdufenbed.566570
Chicago Çeltek, Murat, Sedat Şengül, and Ünal Dömekeli. “Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 954-62. https://doi.org/10.19113/sdufenbed.566570.
EndNote Çeltek M, Şengül S, Dömekeli Ü (December 1, 2019) Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 954–962.
IEEE M. Çeltek, S. Şengül, and Ü. Dömekeli, “Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi”, J. Nat. Appl. Sci., vol. 23, no. 3, pp. 954–962, 2019, doi: 10.19113/sdufenbed.566570.
ISNAD Çeltek, Murat et al. “Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 954-962. https://doi.org/10.19113/sdufenbed.566570.
JAMA Çeltek M, Şengül S, Dömekeli Ü. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. J. Nat. Appl. Sci. 2019;23:954–962.
MLA Çeltek, Murat et al. “Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 954-62, doi:10.19113/sdufenbed.566570.
Vancouver Çeltek M, Şengül S, Dömekeli Ü. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. J. Nat. Appl. Sci. 2019;23(3):954-62.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.