Research Article
BibTex RIS Cite

Co-gasification of Tunçbilek Lignite with Sorghum Biomass and Sorghum Biomass Hydrolysate

Year 2020, Volume: 24 Issue: 1, 57 - 63, 20.04.2020
https://doi.org/10.19113/sdufenbed.526267

Abstract

In this study, high sulphur (1.2%) and ash (20.6%) containing Tunçbilek lignite was co-gasified with raw sorghum (green go) biomass and sorghum hydrolysate, which was hydrolyzed under sub-critical conditions, and synergetic effects of sorghum on co-gasification process were investigated as well as product distributions. The total gas volume obtained from individual gasification of Tunçbilek lignite was less than those obtained from both co–gasification with raw Sorghum and Sorghum hydrolysate. The highest total gas (2810 mL) and hydrogen yield (70.1%) was obtained from co–gasification with sorghum hydrolysate.

References

  • [1] World Energy Resources 2016. World Energy Council https://www.worldenergy.org/wp–content/uploads/2016/10/World–Energy–Resources–Full–report–2016.10.03.pdf (Erişim tarihi 10.10.2018).
  • [2] World Energy Outlook, 2016. https://www.iea.org/media/publications/weo/WEO2016, Chapter1.pdf (Erişim tarihi: 10.04.2017).
  • [3] Minchener, J.A. 2005. Coal gasification for advanced power generation. Fuel, 17, 2222–35.
  • [4] Mallick, D., Mahanta, P., Moholkar, V.S. 2017. Co–gasification of coal and biomass blends: Chemistry and engineering. Fuel, 204, 106–28.
  • [5] Veraa, M.J., Bell, A.T. 1978. Effect of alkali metal catalysts on gasification of coal char. Fuel, 57(4), 194–200.
  • [6] Moore, T.A., Pearce, S. 2006. Hydrogen from coal. International Journal of Coal Geology, 65 (3–4), 171–2.
  • [7] Stiegel, G.J., Ramezan, M. 2006. Hydrogen from coal Gasification:An economical pathway to a sustainable future. International journal of coal geology, 65 (3–4), 173–190.
  • [8] Veraa, M.J., Bell, A.T. 1978. Effect of alkali metal catalysts on gasification of coal char. Fuel, 57 (4), 194–200.
  • [9] Masnadi, M.S., Grace, J.R., Bi, X.T., Lim, C.J., Ellis, N., Li, Y.H., Watkinson, A.P. 2015. From coal towards renewables: catalytic/synergistic effects during steam co–gasification of switchgrass and coal in a pilot–scale bubbling fluidized bed. Renew Energy, 83, 918–930.
  • [10] Masnadi, M.S., Grace, J.R., Bi, X.T., Lim, C.J., Ellis, N. 2015. From fossil fuels towards renewables: inhibitory and catalytic effects on carbon thermochemical conversion during co–gasification of biomass with fossil fuels Appl. Energy, 140, 196–209.
  • [11] Mckee, D.W. 1983. Mechanisms of alkali metal catalysed gasification of carbon. Fuel, 62, 170–175.
  • [12] Mckee, D.W., Chatterji, D. 1975. The catalytic behavior of alkali meral carbonates and oxides in graphite oxidation reactions. Carbon, 13, 381–390.
  • [13] Pan, Y.G., Velo, E., Roca, X., Manya, J.J., Puigjaner, L. 2000. Fluidized–bed co–gasification of residual biomass/poor coal blends for fuel gas production. Fuel, 79(11), 1317–1326.
  • [14] Sjöstroöm, K., Chen, G., Yu, Q., Brage, C., Rosen, C. 1999. Promoted reactivity of char in co–gasification of biomass and coal: synergies in the thermochemical process. Fuel, 78 (10), 1189–1194.
  • [15] Brown, C.R., Liu, K., Norton, G. 2000. Catalytic effects observed during the co–gasification of coal and switchgrass. Biomass Bioenergy, 18 (6), 499–506.
  • [16] Howaniec, N., Smolinski, A., Stanczyk, K., Pichlak, M. 2011. Steam co–gasification of coal and biomass derived chars with synergy effects as an innovative way of hydrogen–rich gas production. Int J Hydrogen Energy, 36(22), 14455–14463.
  • [17] Ren, H.J., Zhang, Y.Q., Fang, Y.T., Wang, Y. 2012. Co–gasification properties of coal char and biomass char. Journal of Fuel Chemistry and technol, 40 (2), 143–148.
  • [18] Howaniec, N., Smolinski, A. 2013. Steam co–gasification of coal and biomass– synergy in reactivity of fuel blends char. Int J Hydrogen energy, 38(36), 16152–16160.
  • [19] Rizkiana, J., Guan, G., Widayatno, W.B., Hao, X., Huang, W., Tsutsumi, A., Abudula, A. 2014. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel, 134, 414–419.
  • [20] Ellis, N., Masnadi, S.M., Roberts, D.G., Kochanek, M.A., Ilyushechkin, A.Y. 2015. Mineral matter interactions during co–pyrolysis of coal and biomass and their impact on instrinsic char co–gasification reactivity. Chemical Engineering Journal, 279, 402–408.
  • [21] Brar, J.S., Singh, K., Wang, J., Kumar, S. 2012. Gasification of Coal and Biomass: A review. Int J Forestry Research, 363058:10.
  • [22] Kezhong, L., Zhang, R., Bi, J. 2010. Experimental study on syngas production by cogasification of coal and biomass in a fluidized bed. Int J Hydrogen Energy, 35, 2722–2726.
  • [23] Velez, F.J., Chejne, F., Valdes, C.F., Emery, E.J., Londono, C.A. 2009. Co–gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel, 88(3), 424–430.
  • [24] Wang, L.Q., Chen, Z.S. 2013. Gas Generation by co–gasification of biomass and coal in an autothermal fluidized bed. Applied Thermal Engineering, 59, 278–282.
  • [25] Xu, Q., Pang, S., Levi, T. 2015. Cogasification of blended coal–biomass in an air/steam BFB gasifier: Experimental investigation and model validation. AIChE Journal, 61(5), 1639–1647.
  • [26] Jeong, H.J., Hwang, I.S., Hwang, J. 2015. Co-gasification of bituminous coal–pine sawdust blended char with H2O at temperatures of 750-850 °C. Fuel, 156, 26–29.
  • [27] Song, Y.C., Ji, M.S., Feng, J., Li, W.Y. 2015. Product distribution from co–gasification of coal and biomass in a fluidized–bed reactor. Energy sources, Part A: Recovery, utilization and Environmental Effects, 37 (23), 2550–2558.
  • [28] Pinto, F., Franco, C., Andre´, R.N., Tavares, C., Dias, M., Gulyurtlu, I., Cabriata, I. 2003. Effect of experimental conditions on CO gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 82, 1967-1976.
  • [29] Wang, L.Q., Chen, Z.S. 2013. Experimental studies on H2–rich gas production by co–gasification of coal and biomass in an intermittent fluidized bed reactor. Advance materials research, 724–725, 1127–1131.
  • [30] Tursun, Y., Xu, S., Wang, G., Wang, C., Xiao, Y. 2015. Tar formation during co–gasification of biomass and coal under different gasification condition.Journal of analytical and applied Pyrolysis, 111, 191–199.
  • [31] Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., Sakanishi, K. 2007. Co–gasification of woody biomass and coal with air and steam. Fuel, 86 (5–6), 684–689.
  • [32] Collot, A.G., Zhuo, Y., Dugwell, D.R., Kandiyoti, R. 2003. Co-pyroysis and co-gasification of coal and biomass in bench scale fixed–bed and fluidized bed system. Fuel, 82(15-17), 1967-1976.
  • [33] Valdés, C.F., Marrugo, G., Chejne, F., Montoya, J.I., Gomez, C.A. 2015. Pilot-scale fluidized-bed co-gasification of palm kernel shell with sub-bituminous coal. Energy Fuels, 29(9),5894-5901.
  • [34] Che, D., Sun, Y., Li, S. 2016. Exergy analysis of co–gasification process of pine sawdust and lignite in fluidized bed. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 37(4), 968–973.
  • [35] Fermoso, J., Arias, B., Plaza, M.G., Pevida, C., Rubiera, F., Pis, J.J. 2009. High–pressure CO–gasification of coal with biomass and petroleum coke. Fuel Process Technol, 90, 926–958.
  • [36] Howainec, N., Smolinski, A. 2014. Effect of fuel blend composition on the efficiency of hydrogen –rich gas production in co–gasification of coal and biomass. Fuel, 128, 442–450.
  • [37] Lapuerta, M., Hernandez, J.J., Pazo, A., Lopez, J. 2008. Gasification and co–gasification of biomass wastes; effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol, 89, 828–837.
  • [38] Li, K., Zhang, R., Bi, J. 2010. Experimental study on syngas production by co–gaisification of coal and biomass in a fluidized bed. Int J Hydrogen energy, 35, 2722–2726.
  • [39] Meryemoğlu, B., Hesenov, A., Irmak, S., Atanur, O., Erbatur, O. 2010. Aqueous phase reforming of biomass using various types of supported precious metal and raney–nickel catalysts for hydrogen production. Int J Hydrogen Energy, 35, 12580–12587.
  • [40] Seçer, A., Küçet, N., Fakı, E., Hasanoğlu, A. 2018. Comparison of co–gaisification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. Int J Hydrogen energy, 43, 21269–21278.
  • [41] Huang, J., Yitian, F., Chen, H., Wang, Y. 2003. Coal gasification characteristic in a pressurized fluidized bed, Energy Fuels, 17, 1474–1479.
  • [42] Ding, L., Zhou, Z., Guo, Q., Yu, G. 2015. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification. Fuel, 142, 134–144.
  • [43] Mondal, K., Piotrowski, K., Dasgupta, D., Hippo, E., Wiltowski, T. 2005. Hydrogen from coal in a single step. Industrial & Engineering Chemistry Research, 44(15), 5508–5517.

Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması

Year 2020, Volume: 24 Issue: 1, 57 - 63, 20.04.2020
https://doi.org/10.19113/sdufenbed.526267

Abstract

Bu çalışmada, yüksek oranda kükürt (%1,2) ve kül (%20,6) içeren Tunçbilek linyiti, öğütülmüş katı sorgum (green go) ve sub-kritik su koşullarında hidroliz edilmiş sorgum hidrolizatı ile birlikte gazlaştırılarak gaz ürün dağılımı ve birlikte gazlaştırma işlemine sorgumun sinerjik etkisi incelenmiştir. Öğütülmüş katı sorgum ve sorgum hidrolizatı ile yapılan birlikte gazlaştırma deneylerinden elde edilen gaz hacimleri, Tunçbilek linyitinin tek başına gazlaştırılmasından elde edilenden daha fazla olduğu görülmüştür. En yüksek toplam gaz hacmi (2810 mL) ve hidrojen verimi (%70,1) 900 °C sıcaklıkta sorgum hidrolizatı ile yapılan birlikte gazlaştırma deneylerinden elde edilmiştir.

References

  • [1] World Energy Resources 2016. World Energy Council https://www.worldenergy.org/wp–content/uploads/2016/10/World–Energy–Resources–Full–report–2016.10.03.pdf (Erişim tarihi 10.10.2018).
  • [2] World Energy Outlook, 2016. https://www.iea.org/media/publications/weo/WEO2016, Chapter1.pdf (Erişim tarihi: 10.04.2017).
  • [3] Minchener, J.A. 2005. Coal gasification for advanced power generation. Fuel, 17, 2222–35.
  • [4] Mallick, D., Mahanta, P., Moholkar, V.S. 2017. Co–gasification of coal and biomass blends: Chemistry and engineering. Fuel, 204, 106–28.
  • [5] Veraa, M.J., Bell, A.T. 1978. Effect of alkali metal catalysts on gasification of coal char. Fuel, 57(4), 194–200.
  • [6] Moore, T.A., Pearce, S. 2006. Hydrogen from coal. International Journal of Coal Geology, 65 (3–4), 171–2.
  • [7] Stiegel, G.J., Ramezan, M. 2006. Hydrogen from coal Gasification:An economical pathway to a sustainable future. International journal of coal geology, 65 (3–4), 173–190.
  • [8] Veraa, M.J., Bell, A.T. 1978. Effect of alkali metal catalysts on gasification of coal char. Fuel, 57 (4), 194–200.
  • [9] Masnadi, M.S., Grace, J.R., Bi, X.T., Lim, C.J., Ellis, N., Li, Y.H., Watkinson, A.P. 2015. From coal towards renewables: catalytic/synergistic effects during steam co–gasification of switchgrass and coal in a pilot–scale bubbling fluidized bed. Renew Energy, 83, 918–930.
  • [10] Masnadi, M.S., Grace, J.R., Bi, X.T., Lim, C.J., Ellis, N. 2015. From fossil fuels towards renewables: inhibitory and catalytic effects on carbon thermochemical conversion during co–gasification of biomass with fossil fuels Appl. Energy, 140, 196–209.
  • [11] Mckee, D.W. 1983. Mechanisms of alkali metal catalysed gasification of carbon. Fuel, 62, 170–175.
  • [12] Mckee, D.W., Chatterji, D. 1975. The catalytic behavior of alkali meral carbonates and oxides in graphite oxidation reactions. Carbon, 13, 381–390.
  • [13] Pan, Y.G., Velo, E., Roca, X., Manya, J.J., Puigjaner, L. 2000. Fluidized–bed co–gasification of residual biomass/poor coal blends for fuel gas production. Fuel, 79(11), 1317–1326.
  • [14] Sjöstroöm, K., Chen, G., Yu, Q., Brage, C., Rosen, C. 1999. Promoted reactivity of char in co–gasification of biomass and coal: synergies in the thermochemical process. Fuel, 78 (10), 1189–1194.
  • [15] Brown, C.R., Liu, K., Norton, G. 2000. Catalytic effects observed during the co–gasification of coal and switchgrass. Biomass Bioenergy, 18 (6), 499–506.
  • [16] Howaniec, N., Smolinski, A., Stanczyk, K., Pichlak, M. 2011. Steam co–gasification of coal and biomass derived chars with synergy effects as an innovative way of hydrogen–rich gas production. Int J Hydrogen Energy, 36(22), 14455–14463.
  • [17] Ren, H.J., Zhang, Y.Q., Fang, Y.T., Wang, Y. 2012. Co–gasification properties of coal char and biomass char. Journal of Fuel Chemistry and technol, 40 (2), 143–148.
  • [18] Howaniec, N., Smolinski, A. 2013. Steam co–gasification of coal and biomass– synergy in reactivity of fuel blends char. Int J Hydrogen energy, 38(36), 16152–16160.
  • [19] Rizkiana, J., Guan, G., Widayatno, W.B., Hao, X., Huang, W., Tsutsumi, A., Abudula, A. 2014. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel, 134, 414–419.
  • [20] Ellis, N., Masnadi, S.M., Roberts, D.G., Kochanek, M.A., Ilyushechkin, A.Y. 2015. Mineral matter interactions during co–pyrolysis of coal and biomass and their impact on instrinsic char co–gasification reactivity. Chemical Engineering Journal, 279, 402–408.
  • [21] Brar, J.S., Singh, K., Wang, J., Kumar, S. 2012. Gasification of Coal and Biomass: A review. Int J Forestry Research, 363058:10.
  • [22] Kezhong, L., Zhang, R., Bi, J. 2010. Experimental study on syngas production by cogasification of coal and biomass in a fluidized bed. Int J Hydrogen Energy, 35, 2722–2726.
  • [23] Velez, F.J., Chejne, F., Valdes, C.F., Emery, E.J., Londono, C.A. 2009. Co–gasification of Colombian coal and biomass in fluidized bed: An experimental study. Fuel, 88(3), 424–430.
  • [24] Wang, L.Q., Chen, Z.S. 2013. Gas Generation by co–gasification of biomass and coal in an autothermal fluidized bed. Applied Thermal Engineering, 59, 278–282.
  • [25] Xu, Q., Pang, S., Levi, T. 2015. Cogasification of blended coal–biomass in an air/steam BFB gasifier: Experimental investigation and model validation. AIChE Journal, 61(5), 1639–1647.
  • [26] Jeong, H.J., Hwang, I.S., Hwang, J. 2015. Co-gasification of bituminous coal–pine sawdust blended char with H2O at temperatures of 750-850 °C. Fuel, 156, 26–29.
  • [27] Song, Y.C., Ji, M.S., Feng, J., Li, W.Y. 2015. Product distribution from co–gasification of coal and biomass in a fluidized–bed reactor. Energy sources, Part A: Recovery, utilization and Environmental Effects, 37 (23), 2550–2558.
  • [28] Pinto, F., Franco, C., Andre´, R.N., Tavares, C., Dias, M., Gulyurtlu, I., Cabriata, I. 2003. Effect of experimental conditions on CO gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 82, 1967-1976.
  • [29] Wang, L.Q., Chen, Z.S. 2013. Experimental studies on H2–rich gas production by co–gasification of coal and biomass in an intermittent fluidized bed reactor. Advance materials research, 724–725, 1127–1131.
  • [30] Tursun, Y., Xu, S., Wang, G., Wang, C., Xiao, Y. 2015. Tar formation during co–gasification of biomass and coal under different gasification condition.Journal of analytical and applied Pyrolysis, 111, 191–199.
  • [31] Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., Sakanishi, K. 2007. Co–gasification of woody biomass and coal with air and steam. Fuel, 86 (5–6), 684–689.
  • [32] Collot, A.G., Zhuo, Y., Dugwell, D.R., Kandiyoti, R. 2003. Co-pyroysis and co-gasification of coal and biomass in bench scale fixed–bed and fluidized bed system. Fuel, 82(15-17), 1967-1976.
  • [33] Valdés, C.F., Marrugo, G., Chejne, F., Montoya, J.I., Gomez, C.A. 2015. Pilot-scale fluidized-bed co-gasification of palm kernel shell with sub-bituminous coal. Energy Fuels, 29(9),5894-5901.
  • [34] Che, D., Sun, Y., Li, S. 2016. Exergy analysis of co–gasification process of pine sawdust and lignite in fluidized bed. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 37(4), 968–973.
  • [35] Fermoso, J., Arias, B., Plaza, M.G., Pevida, C., Rubiera, F., Pis, J.J. 2009. High–pressure CO–gasification of coal with biomass and petroleum coke. Fuel Process Technol, 90, 926–958.
  • [36] Howainec, N., Smolinski, A. 2014. Effect of fuel blend composition on the efficiency of hydrogen –rich gas production in co–gasification of coal and biomass. Fuel, 128, 442–450.
  • [37] Lapuerta, M., Hernandez, J.J., Pazo, A., Lopez, J. 2008. Gasification and co–gasification of biomass wastes; effect of the biomass origin and the gasifier operating conditions. Fuel Process Technol, 89, 828–837.
  • [38] Li, K., Zhang, R., Bi, J. 2010. Experimental study on syngas production by co–gaisification of coal and biomass in a fluidized bed. Int J Hydrogen energy, 35, 2722–2726.
  • [39] Meryemoğlu, B., Hesenov, A., Irmak, S., Atanur, O., Erbatur, O. 2010. Aqueous phase reforming of biomass using various types of supported precious metal and raney–nickel catalysts for hydrogen production. Int J Hydrogen Energy, 35, 12580–12587.
  • [40] Seçer, A., Küçet, N., Fakı, E., Hasanoğlu, A. 2018. Comparison of co–gaisification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. Int J Hydrogen energy, 43, 21269–21278.
  • [41] Huang, J., Yitian, F., Chen, H., Wang, Y. 2003. Coal gasification characteristic in a pressurized fluidized bed, Energy Fuels, 17, 1474–1479.
  • [42] Ding, L., Zhou, Z., Guo, Q., Yu, G. 2015. Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification. Fuel, 142, 134–144.
  • [43] Mondal, K., Piotrowski, K., Dasgupta, D., Hippo, E., Wiltowski, T. 2005. Hydrogen from coal in a single step. Industrial & Engineering Chemistry Research, 44(15), 5508–5517.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Açelya Seçer 0000-0002-5967-8700

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Seçer, A. (2020). Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 57-63. https://doi.org/10.19113/sdufenbed.526267
AMA Seçer A. Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması. SDÜ Fen Bil Enst Der. April 2020;24(1):57-63. doi:10.19113/sdufenbed.526267
Chicago Seçer, Açelya. “Tunçbilek Linyitinin Sorgum Biyokütlesi Ve Biyokütle Hidrolizatı Ile Birlikte Gazlaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 57-63. https://doi.org/10.19113/sdufenbed.526267.
EndNote Seçer A (April 1, 2020) Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 57–63.
IEEE A. Seçer, “Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması”, SDÜ Fen Bil Enst Der, vol. 24, no. 1, pp. 57–63, 2020, doi: 10.19113/sdufenbed.526267.
ISNAD Seçer, Açelya. “Tunçbilek Linyitinin Sorgum Biyokütlesi Ve Biyokütle Hidrolizatı Ile Birlikte Gazlaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 57-63. https://doi.org/10.19113/sdufenbed.526267.
JAMA Seçer A. Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması. SDÜ Fen Bil Enst Der. 2020;24:57–63.
MLA Seçer, Açelya. “Tunçbilek Linyitinin Sorgum Biyokütlesi Ve Biyokütle Hidrolizatı Ile Birlikte Gazlaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 57-63, doi:10.19113/sdufenbed.526267.
Vancouver Seçer A. Tunçbilek Linyitinin Sorgum Biyokütlesi ve Biyokütle Hidrolizatı ile Birlikte Gazlaştırılması. SDÜ Fen Bil Enst Der. 2020;24(1):57-63.

e-ISSN: 1308-6529