Research Article
BibTex RIS Cite

Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması

Year 2020, Volume: 24 Issue: 1, 72 - 79, 20.04.2020
https://doi.org/10.19113/sdufenbed.558180

Abstract

Bu çalışma, robotik uygulamaları için, titreşime dayalı olarak hem karada hem de su üzerinde hareket edebilen, yenilikçi bir ilerleme mekanizmasını tanıtmaktadır. İlerleme mekanizması, su üzerinde batmadan durmasını sağlayan düşük yoğunluklu dikey kanat profiline sahip iki ayaktan ve U şeklinde yay çeliğinden üretilmiş elastik bir çubuktan oluşmaktadır. U şekilli çubuğun ortasına yerleştirilen basit bir sarkaç vasıtası ile sistem titreşime zorlanarak ilerleme gerçekleştirilmektedir. Su içerisinde dikey konumlandırılmış ayaklar salınım yaptıkça ön ve arka yüzeyler arasında oluşan basınç farkı ile robot ileri yönde hareket etmektedir. Karadaki hareketi ise elastik kirişin doğal titreşim modlarına bağlı olarak gerçekleşmektedir. Çalışmada farklı titreşim frekanslarının ilerleme hızına ve yer değiştirme maliyetine etkisi deneyler ile incelenmiş ve sonuçlar yorumlanmıştır. Buna ek olarak ön modelin yer değiştirme maliyeti (CoT) literatürdeki bazı robotlar ve canlılar ile karşılaştırılmıştır. 

References

  • [1] Kar, D.C., Kurien, I.K., Jayarajan, K. 2003. Gaits and energetics in terrestrial legged locomotion. Mechanism and Machine Theory, 38, 355–366.
  • [2] Armour, R., Paskins, K., Bowyer, A., Vincent, J., Megill, W. 2007. Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration & Biomimetics, 2, 565–582.
  • [3] Zhang, Z., Chen, D., Chen, K., Chen, H. 2016. Analysis and comparison of two jumping leg models for bioinspired locust robot. Journal of Bionic Engineering, 13, 558-571.
  • [4] Hanan, U. B., Weiss, A., Zaitsev, V. 2018. Jumping efficiency of small creatures and its applicability in robotics. Procedia Manufacturing, 21, 243-250.
  • [5] Kelasidi, E., Jesmani, M., Pettersen, K. Y., Gravdahl, J. T. 2018. Locomotion efficiency optimization of biologically inspired snake robots. Applied Science, 8, 1-23.
  • [6] Alexander, R. N. 2006. Principles of animal locomotion. Princeton University Press. Princeton, NJ, 384s
  • [7] Calisti, M., Picardi, G., Laschi, C. 2017. Fundamentals of soft robot locomotion. Journal of Royal Society Interface, 14, 1-16.
  • [8] McGeer, T. 1990. Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62–82.
  • [9] Collins, S., Ruina, A., Tedrake, R., Wisse, M. 2005. Efficient bipedal robots based on passive dynamic walkers. Science, 307, 1082–1085.
  • [10] Owaki, D., Koyama, M., Yamaguchi, S., Kubo, S., Ishiguro, A. 2010. A two-dimensional passive dynamic running biped with knees. IEEE International Conference on Robotics and Automation, Mayıs 3-8, Alaska, 5237–5242.
  • [11] Kühnel, D.T., Helps, T., Rossiter, J. 2016. Kinematic Analysis of VibroBot: A Soft, Hopping Robot with Stiffness and Shape-Changing Abilities. Frontiers in Robotics AI, 3(60), 1-11.
  • [12] Raibert, M.H. 1986. Legged robots. Communications of the ACM, 29, 499–514.
  • [13] Yu, X., Iida F. 2014. Minimalistic models of an energy-efficient vertical-hopping robot. IEEE Transactions and Industrial Electronics, 61(2), 1053-1062.
  • [14] Geyer, H., Blickhan, R., Seyfarth, A. 2005. Spring-mass running: simple approximate solution and application. Journal of Theoretical Biology, 232, 315-328.
  • [15] Reis, M., Iida, F. 2011. Vibration based under-actuated bounding mechanism IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 892–897.
  • [16] Reis, M., Yu, X., Maheshwari, N., Iida, F. 2013. Morphological computation of multi-gaited robot locomotion based on free vibration. Artificial Life, 19, 97–114.
  • [17] Reis, M., Iida, F. 2014. An energy-efficient hopping robot based on free vibration of a curved beam. IEEE/ASME Trans. Mechatronics, 19, 300–311.
  • [18] Bhatti, J., Hale, M., Iravani. P., Plummer, A., Sahinkaya, N. 2017. Adaptive height controller for an agile hopping robot. Robotics and Autonomous Systems, 98, 126–134.
  • [19] Steltz, E., Seeman, M., Avadhanula, S., Fearing, R. S. 2006. Power Electronics Design Choice for Piezoelectric Microrobots. IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Ekim, Pekin, Çin, 1322–1328.
  • [20] Becker, F., Zimmermann, K., Volkova, T., Minchenya, V.T. 2013. An Amphibious Vibration-driven Microrobot with a Piezoelectric Actuator: 7. Regular and Chaotic Dynamics,18(1–2), 63–74.
  • [21] Chen, Y., Doshi, N., Goldberg, B., Wang, H., Wood, R.J. 2018. Controllable water surface to underwater transition through electro wetting in a hybrid terrestrial aquatic microrobot. Nature Communications 9(2495), 1–11.
  • [22] Li, M., Guo, S., Hirata, H., Ishihara, H. 2015. Design and performance evaluation of an amphibious spherical robot. Robotics and Autonomous Systems, 64, 21–34.
  • [23] Li, M., Guo, S., Hirata, H., Ishihara, H. 2017. A roller-skating/walking mode-based amphibious robot. Robotics and Computer-Integrated Manufacturing, 44, 17–29.
  • [24] Xing, H., Guo, S., Shi, L., He, Y., Su, S., Chen, Z. Hou, X. 2018. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot. Applied Science, 8(156), 1- 24.
  • [25] Zhong, B., Zhang, S., Xu, M., Zhou, Y., Fang, T., Li, W. 2018. On a CPG-Based Hexapod Robot: AmphiHex-II With Variable Stiffness Legs. IEEE/ASME Transactions on Mechatronics, 23(2), 542-551.
  • [26] Pliant Enerji Sistemleri, 2019. Velox tanıtım sayfası. https://www.pliantenergy.com/home-1 (Erişim Tarihi: 07.02.2019).
  • [27] Matsuo, T., Yokoyama, T., Ueno, D., Ishii, K. 2008. Biomimetic Motion Control System Based on a CPG for an Amphibious Multi-Link Mobile Robot. Journal of Bionic Engineering Suppl., 91–97.
  • [28] Shi, L., Guo, S., Mao, S., Yue, C., Li, M., Asaka, K. 2013. Development of an Amphibious Turtle-Inspired Spherical Mother Robot. Journal of Bionic Engineering, 10, 446–455.
  • [29] Kim, H.G., Lee, D.G., Liu, Y., Jeong, K., Seo, T.W. Hexapedal Robotic Platform for Amphibious Locomotion on Ground and Water Surface. Journal of Bionic Engineering, 13, 39–47.
  • [30] Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J. 2013. Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits. IEEE Transactions on Robotics, 29(2), 308-320.
  • [31] Zhang, S., Liang, X., Xu, L., Xu, M. 2013. Initial Development of a Novel Amphibious Robot with Transformable Fin-Leg Composite Propulsion Mechanisms. Journal of Bionic Engineering, 10, 434–445.
  • [32] Tucker, V.A. 1975. The Energetic Cost of Moving About: Walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish and bicyclists. American Scientist, 63(4), 413-419.

Vibration Based Amphibious Locomotion Mechanism for Robotic Applications

Year 2020, Volume: 24 Issue: 1, 72 - 79, 20.04.2020
https://doi.org/10.19113/sdufenbed.558180

Abstract

This work presents an innovative locomotion mechanism both on land and water surface based on vibration, for robotic applications. The locomotion mechanism consists of two legs with a low-density vertical wing profile that allows them to stand on water and a U-shaped elastic beam made of spring steel. The locomotion is generated by forcing the system to vibrate by means of a simple pendulum placed in the middle of the U-shaped bar. As the vertically positioned feet in the water oscillate, the robot moves in the forward direction with the pressure difference between the front and rear surfaces. The movement on the land is realized depending on the natural vibration modes of the elastic beam. In this work, the effect of different vibration frequencies on the locomotion velocity and the Cost of Transport (CoT) were investigated experimentally and the results were interpreted and discussed. In addition to these, the Cost of Transport of the preliminary model was compared with that of some robots and creatures in the literature.

References

  • [1] Kar, D.C., Kurien, I.K., Jayarajan, K. 2003. Gaits and energetics in terrestrial legged locomotion. Mechanism and Machine Theory, 38, 355–366.
  • [2] Armour, R., Paskins, K., Bowyer, A., Vincent, J., Megill, W. 2007. Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration & Biomimetics, 2, 565–582.
  • [3] Zhang, Z., Chen, D., Chen, K., Chen, H. 2016. Analysis and comparison of two jumping leg models for bioinspired locust robot. Journal of Bionic Engineering, 13, 558-571.
  • [4] Hanan, U. B., Weiss, A., Zaitsev, V. 2018. Jumping efficiency of small creatures and its applicability in robotics. Procedia Manufacturing, 21, 243-250.
  • [5] Kelasidi, E., Jesmani, M., Pettersen, K. Y., Gravdahl, J. T. 2018. Locomotion efficiency optimization of biologically inspired snake robots. Applied Science, 8, 1-23.
  • [6] Alexander, R. N. 2006. Principles of animal locomotion. Princeton University Press. Princeton, NJ, 384s
  • [7] Calisti, M., Picardi, G., Laschi, C. 2017. Fundamentals of soft robot locomotion. Journal of Royal Society Interface, 14, 1-16.
  • [8] McGeer, T. 1990. Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62–82.
  • [9] Collins, S., Ruina, A., Tedrake, R., Wisse, M. 2005. Efficient bipedal robots based on passive dynamic walkers. Science, 307, 1082–1085.
  • [10] Owaki, D., Koyama, M., Yamaguchi, S., Kubo, S., Ishiguro, A. 2010. A two-dimensional passive dynamic running biped with knees. IEEE International Conference on Robotics and Automation, Mayıs 3-8, Alaska, 5237–5242.
  • [11] Kühnel, D.T., Helps, T., Rossiter, J. 2016. Kinematic Analysis of VibroBot: A Soft, Hopping Robot with Stiffness and Shape-Changing Abilities. Frontiers in Robotics AI, 3(60), 1-11.
  • [12] Raibert, M.H. 1986. Legged robots. Communications of the ACM, 29, 499–514.
  • [13] Yu, X., Iida F. 2014. Minimalistic models of an energy-efficient vertical-hopping robot. IEEE Transactions and Industrial Electronics, 61(2), 1053-1062.
  • [14] Geyer, H., Blickhan, R., Seyfarth, A. 2005. Spring-mass running: simple approximate solution and application. Journal of Theoretical Biology, 232, 315-328.
  • [15] Reis, M., Iida, F. 2011. Vibration based under-actuated bounding mechanism IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 892–897.
  • [16] Reis, M., Yu, X., Maheshwari, N., Iida, F. 2013. Morphological computation of multi-gaited robot locomotion based on free vibration. Artificial Life, 19, 97–114.
  • [17] Reis, M., Iida, F. 2014. An energy-efficient hopping robot based on free vibration of a curved beam. IEEE/ASME Trans. Mechatronics, 19, 300–311.
  • [18] Bhatti, J., Hale, M., Iravani. P., Plummer, A., Sahinkaya, N. 2017. Adaptive height controller for an agile hopping robot. Robotics and Autonomous Systems, 98, 126–134.
  • [19] Steltz, E., Seeman, M., Avadhanula, S., Fearing, R. S. 2006. Power Electronics Design Choice for Piezoelectric Microrobots. IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Ekim, Pekin, Çin, 1322–1328.
  • [20] Becker, F., Zimmermann, K., Volkova, T., Minchenya, V.T. 2013. An Amphibious Vibration-driven Microrobot with a Piezoelectric Actuator: 7. Regular and Chaotic Dynamics,18(1–2), 63–74.
  • [21] Chen, Y., Doshi, N., Goldberg, B., Wang, H., Wood, R.J. 2018. Controllable water surface to underwater transition through electro wetting in a hybrid terrestrial aquatic microrobot. Nature Communications 9(2495), 1–11.
  • [22] Li, M., Guo, S., Hirata, H., Ishihara, H. 2015. Design and performance evaluation of an amphibious spherical robot. Robotics and Autonomous Systems, 64, 21–34.
  • [23] Li, M., Guo, S., Hirata, H., Ishihara, H. 2017. A roller-skating/walking mode-based amphibious robot. Robotics and Computer-Integrated Manufacturing, 44, 17–29.
  • [24] Xing, H., Guo, S., Shi, L., He, Y., Su, S., Chen, Z. Hou, X. 2018. Hybrid Locomotion Evaluation for a Novel Amphibious Spherical Robot. Applied Science, 8(156), 1- 24.
  • [25] Zhong, B., Zhang, S., Xu, M., Zhou, Y., Fang, T., Li, W. 2018. On a CPG-Based Hexapod Robot: AmphiHex-II With Variable Stiffness Legs. IEEE/ASME Transactions on Mechatronics, 23(2), 542-551.
  • [26] Pliant Enerji Sistemleri, 2019. Velox tanıtım sayfası. https://www.pliantenergy.com/home-1 (Erişim Tarihi: 07.02.2019).
  • [27] Matsuo, T., Yokoyama, T., Ueno, D., Ishii, K. 2008. Biomimetic Motion Control System Based on a CPG for an Amphibious Multi-Link Mobile Robot. Journal of Bionic Engineering Suppl., 91–97.
  • [28] Shi, L., Guo, S., Mao, S., Yue, C., Li, M., Asaka, K. 2013. Development of an Amphibious Turtle-Inspired Spherical Mother Robot. Journal of Bionic Engineering, 10, 446–455.
  • [29] Kim, H.G., Lee, D.G., Liu, Y., Jeong, K., Seo, T.W. Hexapedal Robotic Platform for Amphibious Locomotion on Ground and Water Surface. Journal of Bionic Engineering, 13, 39–47.
  • [30] Crespi, A., Karakasiliotis, K., Guignard, A., Ijspeert, A.J. 2013. Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits. IEEE Transactions on Robotics, 29(2), 308-320.
  • [31] Zhang, S., Liang, X., Xu, L., Xu, M. 2013. Initial Development of a Novel Amphibious Robot with Transformable Fin-Leg Composite Propulsion Mechanisms. Journal of Bionic Engineering, 10, 434–445.
  • [32] Tucker, V.A. 1975. The Energetic Cost of Moving About: Walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish and bicyclists. American Scientist, 63(4), 413-419.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmed Burak Tapan 0000-0001-8696-9741

Murat Reis This is me 0000-0001-5853-488X

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Tapan, A. B., & Reis, M. (2020). Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 72-79. https://doi.org/10.19113/sdufenbed.558180
AMA Tapan AB, Reis M. Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması. J. Nat. Appl. Sci. April 2020;24(1):72-79. doi:10.19113/sdufenbed.558180
Chicago Tapan, Ahmed Burak, and Murat Reis. “Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 72-79. https://doi.org/10.19113/sdufenbed.558180.
EndNote Tapan AB, Reis M (April 1, 2020) Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 72–79.
IEEE A. B. Tapan and M. Reis, “Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 72–79, 2020, doi: 10.19113/sdufenbed.558180.
ISNAD Tapan, Ahmed Burak - Reis, Murat. “Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 72-79. https://doi.org/10.19113/sdufenbed.558180.
JAMA Tapan AB, Reis M. Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması. J. Nat. Appl. Sci. 2020;24:72–79.
MLA Tapan, Ahmed Burak and Murat Reis. “Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 72-79, doi:10.19113/sdufenbed.558180.
Vancouver Tapan AB, Reis M. Robotik Uygulamalar İçin Titreşime Dayalı Hareket Eden Amfibik İlerleme Mekanizması. J. Nat. Appl. Sci. 2020;24(1):72-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.