Research Article
BibTex RIS Cite

Silk Fibroin/Polyvinyl alcohol Based Drug Carrier Wound Dressings

Year 2020, Volume: 24 Issue: 1, 25 - 34, 20.04.2020
https://doi.org/10.19113/sdufenbed.561177

Abstract

The aim of this study was to develop a novel carboxyl modified poly(vinyl alcohol) - crosslinked silk fibroin based hydrogel film (IF/PVA) as a potential drug carrier wound dressing. For the preparation of crosslinked hydrogels, poly(vinyl alcohol) (PVA) was modified with succinic anhydride (SA) to give carboxyl modified poly(vinyl alcohol) (PVA-COOH) and characterized by FTIR and 1H NMR analyzes. Subsequently, a series of hydrogel films based on different concentrations of PVA-COOH and silk fibroin (IF) were prepared in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and n-hydroxysuccinimide (NHS) by solvent casting method. The structures of the synthesized films were characterized by FTIR and XRD analyzes and their surface morphology was examined under optical microscope and their swelling behavior and mechanical strength properties were determined. According to the performed cytotoxicity tests, it was found that the synthesized IF/ PVA membrane dressings were not toxic. The selected IF/PVA hydrogel film with optimum properties was loaded with quercetin as a model drug and their release profile was investigated in phosphate buffered media (pH: 7.4). The results of the in vitro wound model (scratch test) have shown that IF/PVA film showing a controlled quercetin release profile over 10 days can be used as a potential drug-carrier wound dressing.

References

  • [1] Farokhi, M., Mottaghitalab, F., Fatahi, Y., Khademhosseini, A., Kaplan, D. L. 2018. Overview of silk fibroin use in wound dressings. Trends in biotechnology, 36(9), 907-922.
  • [2] Çalamak, S., Erdoğdu, C., Özalp, M., Ulubayram, K. 2014. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Materials Science and Engineering: C, 43, 11-20.
  • [3] Guziewicz, N., Best, A., Perez-Ramirez, B., & Kaplan, D. L. 2011. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 32(10), 2642-2650.
  • [4] Bayraktar, O., Malay, Ö., Özgarip, Y., Batıgün, A. 2005. Silk fibroin as a novel coating material for controlled release of theophylline. European Journal of Pharmaceutics and Biopharmaceutics, 60(3), 373-381.
  • [5] Wang, Y. X., Qin, Y. P., Kong, Z. J., Wang, Y. J., Ma, L. 2014. Glutaraldehyde Cross-Linked Silk Fibroin Films for Controlled Release. In Advanced Materials Research, 887, 541-546.
  • [6] Murphy, A. R., Kaplan, D. L. 2009. Biomedical applications of chemically-modified silk fibroin. Journal of materials chemistry, 19(36), 6443-6450.
  • [7] Panico, A., Paladini, F., Pollini, M. 2019. Development of regenerative and flexible fibroin‐based wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(1), 7-18.
  • [8] Kundu, J., Mohapatra, R., Kundu, S. C. 2011. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications. Journal of Biomaterials Science, Polymer Edition, 22(4-6), 519-539.
  • [9] Zhang, D., Zhou, W., Wei, B., Wang, X., Tang, R., Nie, J., Wang, J. 2015. Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate polymers, 125, 189-199.
  • [10] Kant, V., Jangir, B. L., Nigam, A., Kumar, V., Sharma, S. 2017. Dose regulated cutaneous wound healing potential of quercetin in male rats. Wound Medicine, 19, 82-87.
  • [11] Vedakumari, W. S., Ayaz, N., Karthick, A. S., Senthil, R., Sastry, T. P. 2017. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—Fabrication, characterization and in vivo analysis. European Journal of Pharmaceutical Sciences, 97, 106-112.
  • [12] Jangde, R., Srivastava, S., Singh, M. R., Singh, D. 2018. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. International journal of biological macromolecules, 115, 1211-1217.
  • [13] Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., Kaplan, D. L. 2011. Materials fabrication from Bombyx mori silk fibroin. Nature protocols, 6(10), 1612-1631.
  • [14] Bashir, S., Teo, Y. Y., Ramesh, S., Ramesh, K. 2018. Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. Polymer, 147, 108-120.
  • [15] Monjezi, J., Jamaledin, R., Ghaemy, M., Moeini, A., Makvandi, P. 2018. A Performance Comparison of Graft Copolymer Hydrogels Based on Functionalized-Tragacanth Gum/Polyacrylic Acid and Polyacrylamide as Antibacterial and Antifungal Drug Release Vehicles. American Journal of Nanotechnology & Nanomedicine Research, 1(1), 010-015.
  • [16] Alavarse, A. C., de Oliveira Silva, F. W., Colque, J. T., da Silva, V. M., Prieto, T., Venancio, E. C., Bonvent, J. J. 2017. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Materials Science and Engineering: C, 77, 271-281.
  • [17] Zhou, Z. F., Xu, W. B., He, D., Fan, J. X., Yu, F., Ren, F. M. 2007. Solid‐state grafting of succinic anhydride onto poly (vinyl alcohol). Journal of applied polymer science, 103(2), 848-852.
  • [18] Tanaka, T., Tanigami, T., Yamaura, K. 1998. Phase separation structure in poly (vinyl alcohol)/silk fibroin blend films. Polymer international, 45(2), 175-184.
  • [19] Dai, L., Li, J., Yamada, E. 2002. Effect of glycerin on structure transition of PVA/SF blends. Journal of applied polymer science, 86(9), 2342-2347.
  • [20] Kundu, J., Mohapatra, R., Kundu, S. C. 2011. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications. Journal of Biomaterials Science, Polymer Edition, 22(4-6), 519-539.
  • [21] Kuzuhara, A., Asakura, T., Tomoda, R., Matsunaga, T. 1987. Use of silk fibroin for enzyme membrane. Journal of biotechnology, 5(3), 199-207.
  • [22] He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., Xia, Q. 2017. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International journal of biological macromolecules, 104, 457-464.
  • [23] Zhang, C. H., Yang, F. L., Wang, W. J., Chen, B. 2008. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Separation and Purification Technology, 61(3), 276-286.
  • [24] Lee, K. H., Baek, D. H., Ki, C. S., Park, Y. H. 2007. Preparation and characterization of wet spun silk fibroin/poly (vinyl alcohol) blend filaments. International journal of biological macromolecules, 41(2), 168-172.
  • [25] Gil, E. S., Panilaitis, B., Bellas, E., Kaplan, D. L. 2013. Functionalized silk biomaterials for wound healing. Advanced healthcare materials, 2(1), 206-217.
  • [26] Vasconcelos, A., Gomes, A. C., Cavaco-Paulo, A. 2012. Novel silk fibroin/elastin wound dressings. Acta biomaterialia, 8(8), 3049-3060.
  • [27] Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Kweon, H. Y., Lee, K. G., Lee, J. H. 2006. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. Journal of Materials Science: Materials in Medicine, 17(6), 547-552.
  • [28] Liu, T. L., Miao, J. C., Sheng, W. H., Xie, Y. F., Huang, Q., Shan, Y. B., Yang, J. C. 2010. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. Journal of Zhejiang University Science B, 11(1), 10-16. [29] Kurtoğlu, A. H., Karataş, A. 2009. Yara tedavisinde güncel yaklaşımlar: modern yara örtüleri. Ankara Ecz. Fak. Derg., 38 (3), 211-232.
  • [30] Park, Y. R., Sultan, M. T., Park, H. J., Lee, J. M., Ju, H. W., Lee, O. J., Park, C. H. 2018. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta biomaterialia, 67, 183-195.
  • [31] Park, Y. R., Ju, H. W., Lee, J. M., Kim, D. K., Lee, O. J., Moon, B. M., Park, C. H. 2016. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. International journal of biological macromolecules, 93, 1567-1574.
  • [32] Park, H. J., Lee, O. J., Lee, M. C., Moon, B. M., Ju, H. W., min Lee, J., Park, C. H. 2015. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. International journal of biological macromolecules, 78, 215-223.
  • [33] Lee, D. H., Tripathy, N., Shin, J. H., Song, J. E., Cha, J. G., Min, K. D., Khang, G. 2017. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. International journal of biological macromolecules, 95, 14-23.
  • [34] Lee, M. C., Kim, D. K., Lee, O. J., Kim, J. H., Ju, H. W., Lee, J. M., Park, C. H. 2016. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(3), 508-514.

İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri

Year 2020, Volume: 24 Issue: 1, 25 - 34, 20.04.2020
https://doi.org/10.19113/sdufenbed.561177

Abstract

Bu çalışmanın amacı, potansiyel yara örtüsü olarak ilaç taşıyıcı-yeni bir karboksil modifiyeli poli(vinil alkol)-çapraz bağlı ipek fibroin esaslı hidrojel filmi (İF/PVA) geliştirmektir. Çapraz bağlı hidrojellerin hazırlanması için poli(vinil alkol) (PVA), karboksil modifiye poli(vinil alkol) (PVA-COOH) verecek şekilde süksinik anhidrit (SA) ile modifiye edilmiş, FTIR ve 1H NMR analizleri ile karakterize edilmiştir. Takiben çözücü döküm yöntemi ile 1-etil-3-(3-dimetilaminopropil) karbodiimid (EDC) ve n-hidroksisüksinimid (NHS) varlığında farklı konsantrasyonlarda PVA-COOH ve ipek fibroin (İF) esaslı bir seri hidrojel filmler hazırlanmıştır. Elde edilen filmlerin yapıları FTIR ve XRD analizleri ile karakterize edilmiş, yüzey morfolojileri optik mikroskop altında incelenmiş, şişme davranışları ve mekaniksel dayanım özellikleri belirlenmiştir. Gerçekleştirilen sitotoksisite testleri ile sentezlenen İF/PVA membran yara örtülerinin toksik olmadığı bulunmuştur. Optimum özelliklere sahip İF/PVA hidrojel filmine model ilaç olarak kuersetin yüklenmiş, etken madde yüklü filmlerin fosfat tamponu ortamında (pH:7,4) salım davranış profili incelenmiştir. Gerçekleştirilen in vitro yara modeli (çizik testi) sonuçları, 10 güne kadar kontrollü kuersetin salım profili gösteren İF/PVA filminin potansiyel ilaç taşıyıcı bir yara örtüsü olarak kullanılabileceğini göstermiştir.

References

  • [1] Farokhi, M., Mottaghitalab, F., Fatahi, Y., Khademhosseini, A., Kaplan, D. L. 2018. Overview of silk fibroin use in wound dressings. Trends in biotechnology, 36(9), 907-922.
  • [2] Çalamak, S., Erdoğdu, C., Özalp, M., Ulubayram, K. 2014. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Materials Science and Engineering: C, 43, 11-20.
  • [3] Guziewicz, N., Best, A., Perez-Ramirez, B., & Kaplan, D. L. 2011. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials, 32(10), 2642-2650.
  • [4] Bayraktar, O., Malay, Ö., Özgarip, Y., Batıgün, A. 2005. Silk fibroin as a novel coating material for controlled release of theophylline. European Journal of Pharmaceutics and Biopharmaceutics, 60(3), 373-381.
  • [5] Wang, Y. X., Qin, Y. P., Kong, Z. J., Wang, Y. J., Ma, L. 2014. Glutaraldehyde Cross-Linked Silk Fibroin Films for Controlled Release. In Advanced Materials Research, 887, 541-546.
  • [6] Murphy, A. R., Kaplan, D. L. 2009. Biomedical applications of chemically-modified silk fibroin. Journal of materials chemistry, 19(36), 6443-6450.
  • [7] Panico, A., Paladini, F., Pollini, M. 2019. Development of regenerative and flexible fibroin‐based wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(1), 7-18.
  • [8] Kundu, J., Mohapatra, R., Kundu, S. C. 2011. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications. Journal of Biomaterials Science, Polymer Edition, 22(4-6), 519-539.
  • [9] Zhang, D., Zhou, W., Wei, B., Wang, X., Tang, R., Nie, J., Wang, J. 2015. Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate polymers, 125, 189-199.
  • [10] Kant, V., Jangir, B. L., Nigam, A., Kumar, V., Sharma, S. 2017. Dose regulated cutaneous wound healing potential of quercetin in male rats. Wound Medicine, 19, 82-87.
  • [11] Vedakumari, W. S., Ayaz, N., Karthick, A. S., Senthil, R., Sastry, T. P. 2017. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—Fabrication, characterization and in vivo analysis. European Journal of Pharmaceutical Sciences, 97, 106-112.
  • [12] Jangde, R., Srivastava, S., Singh, M. R., Singh, D. 2018. In vitro and In vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. International journal of biological macromolecules, 115, 1211-1217.
  • [13] Rockwood, D. N., Preda, R. C., Yücel, T., Wang, X., Lovett, M. L., Kaplan, D. L. 2011. Materials fabrication from Bombyx mori silk fibroin. Nature protocols, 6(10), 1612-1631.
  • [14] Bashir, S., Teo, Y. Y., Ramesh, S., Ramesh, K. 2018. Synthesis and characterization of karaya gum-g-poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. Polymer, 147, 108-120.
  • [15] Monjezi, J., Jamaledin, R., Ghaemy, M., Moeini, A., Makvandi, P. 2018. A Performance Comparison of Graft Copolymer Hydrogels Based on Functionalized-Tragacanth Gum/Polyacrylic Acid and Polyacrylamide as Antibacterial and Antifungal Drug Release Vehicles. American Journal of Nanotechnology & Nanomedicine Research, 1(1), 010-015.
  • [16] Alavarse, A. C., de Oliveira Silva, F. W., Colque, J. T., da Silva, V. M., Prieto, T., Venancio, E. C., Bonvent, J. J. 2017. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Materials Science and Engineering: C, 77, 271-281.
  • [17] Zhou, Z. F., Xu, W. B., He, D., Fan, J. X., Yu, F., Ren, F. M. 2007. Solid‐state grafting of succinic anhydride onto poly (vinyl alcohol). Journal of applied polymer science, 103(2), 848-852.
  • [18] Tanaka, T., Tanigami, T., Yamaura, K. 1998. Phase separation structure in poly (vinyl alcohol)/silk fibroin blend films. Polymer international, 45(2), 175-184.
  • [19] Dai, L., Li, J., Yamada, E. 2002. Effect of glycerin on structure transition of PVA/SF blends. Journal of applied polymer science, 86(9), 2342-2347.
  • [20] Kundu, J., Mohapatra, R., Kundu, S. C. 2011. Silk fibroin/sodium carboxymethylcellulose blended films for biotechnological applications. Journal of Biomaterials Science, Polymer Edition, 22(4-6), 519-539.
  • [21] Kuzuhara, A., Asakura, T., Tomoda, R., Matsunaga, T. 1987. Use of silk fibroin for enzyme membrane. Journal of biotechnology, 5(3), 199-207.
  • [22] He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., Xia, Q. 2017. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International journal of biological macromolecules, 104, 457-464.
  • [23] Zhang, C. H., Yang, F. L., Wang, W. J., Chen, B. 2008. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Separation and Purification Technology, 61(3), 276-286.
  • [24] Lee, K. H., Baek, D. H., Ki, C. S., Park, Y. H. 2007. Preparation and characterization of wet spun silk fibroin/poly (vinyl alcohol) blend filaments. International journal of biological macromolecules, 41(2), 168-172.
  • [25] Gil, E. S., Panilaitis, B., Bellas, E., Kaplan, D. L. 2013. Functionalized silk biomaterials for wound healing. Advanced healthcare materials, 2(1), 206-217.
  • [26] Vasconcelos, A., Gomes, A. C., Cavaco-Paulo, A. 2012. Novel silk fibroin/elastin wound dressings. Acta biomaterialia, 8(8), 3049-3060.
  • [27] Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Kweon, H. Y., Lee, K. G., Lee, J. H. 2006. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. Journal of Materials Science: Materials in Medicine, 17(6), 547-552.
  • [28] Liu, T. L., Miao, J. C., Sheng, W. H., Xie, Y. F., Huang, Q., Shan, Y. B., Yang, J. C. 2010. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. Journal of Zhejiang University Science B, 11(1), 10-16. [29] Kurtoğlu, A. H., Karataş, A. 2009. Yara tedavisinde güncel yaklaşımlar: modern yara örtüleri. Ankara Ecz. Fak. Derg., 38 (3), 211-232.
  • [30] Park, Y. R., Sultan, M. T., Park, H. J., Lee, J. M., Ju, H. W., Lee, O. J., Park, C. H. 2018. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta biomaterialia, 67, 183-195.
  • [31] Park, Y. R., Ju, H. W., Lee, J. M., Kim, D. K., Lee, O. J., Moon, B. M., Park, C. H. 2016. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. International journal of biological macromolecules, 93, 1567-1574.
  • [32] Park, H. J., Lee, O. J., Lee, M. C., Moon, B. M., Ju, H. W., min Lee, J., Park, C. H. 2015. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. International journal of biological macromolecules, 78, 215-223.
  • [33] Lee, D. H., Tripathy, N., Shin, J. H., Song, J. E., Cha, J. G., Min, K. D., Khang, G. 2017. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. International journal of biological macromolecules, 95, 14-23.
  • [34] Lee, M. C., Kim, D. K., Lee, O. J., Kim, J. H., Ju, H. W., Lee, J. M., Park, C. H. 2016. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(3), 508-514.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ayça Bal Öztürk 0000-0002-6502-528X

Zeynep Püren Akgüner This is me 0000-0002-9626-1605

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Bal Öztürk, A., & Akgüner, Z. P. (2020). İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 25-34. https://doi.org/10.19113/sdufenbed.561177
AMA Bal Öztürk A, Akgüner ZP. İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri. J. Nat. Appl. Sci. April 2020;24(1):25-34. doi:10.19113/sdufenbed.561177
Chicago Bal Öztürk, Ayça, and Zeynep Püren Akgüner. “İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 25-34. https://doi.org/10.19113/sdufenbed.561177.
EndNote Bal Öztürk A, Akgüner ZP (April 1, 2020) İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 25–34.
IEEE A. Bal Öztürk and Z. P. Akgüner, “İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 25–34, 2020, doi: 10.19113/sdufenbed.561177.
ISNAD Bal Öztürk, Ayça - Akgüner, Zeynep Püren. “İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 25-34. https://doi.org/10.19113/sdufenbed.561177.
JAMA Bal Öztürk A, Akgüner ZP. İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri. J. Nat. Appl. Sci. 2020;24:25–34.
MLA Bal Öztürk, Ayça and Zeynep Püren Akgüner. “İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 25-34, doi:10.19113/sdufenbed.561177.
Vancouver Bal Öztürk A, Akgüner ZP. İpek Fibroin/Polivinil Alkol Esaslı İlaç Taşıyıcı Yara Örtüleri. J. Nat. Appl. Sci. 2020;24(1):25-34.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.