Research Article
BibTex RIS Cite

Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid

Year 2020, Volume: 24 Issue: 1, 80 - 89, 20.04.2020
https://doi.org/10.19113/sdufenbed.562072

Abstract

This paper describes sensitive ascorbic acid (AA) determination on montmorillonite clay and silk protein sericin nanocomposite (MMT-Ser NC) modified pencil graphite electrode (PGE) for the first time. Nanocomposite structures were synthesized by desolvation technique and cross-linked with glutaraldehyde (GA). The synthesized MMT-Ser NC was evaluated by various methods. As a result of the characterization studies, it was determined that the sericin was successfully converged with the montmorillonite structure, and that the MMT-Ser NCs were homogeneous and uniform, with the size of 150 nm and zeta potentials of approximately -27.6 mV. MMT-Ser NC modified electrodes were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Under the optimized conditions, working linear range for the modified sensor was found as 10-1000 µM with square wave voltammetry and the limit of detection (LOD) was found as 8 µM. The relative standard deviation for reproducibility was calculated as % 4.82 (n=6). Real sample analysis was performed with drug samples and the recovery values ranged from 94.64% to 111.2%.

Supporting Institution

Hacettepe University

Project Number

FHD-2018-17045

References

  • [1] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M. 2003. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35.
  • [2] Pisoschi, A.M., Pop, A., Serban, A.I., Fafaneata, C. 2014. Electrochemical methods for ascorbic acid determination. Electrochimica Acta, 121, 443–460.
  • [3] Arrigoni, O., De Tullio, M.C. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569(2), 1–9.
  • [4] Bradshaw, M.P., Barril, C., Clark, A.C., Prenzler, P.D., Scollary, G.R. 2011. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Critical Reviews in Food Science and Nutrition, 51(6), 479–98.
  • [5] Erdurak-Kiliç, C.S., Uslu, B., Dogan, B., Ozgen, U., Ozkan, S.A., Coskun, M. 2006. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. Journal of Analytical Chemistry, 61(11), 1113–20.
  • [6] Levine, M., Rumsey, S.C., Daruwala, R., Park, J.B., Wang Y. 1999. Criteria and Recommendations for Vitamin C Intake. JAMA, 281(15), 1415. [7] Kumar, S.A., Lo, P.H., Chen, S.M. 2008. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosensors and Bioelectronics, 24(4), 518–23.
  • [8] Pisoschi, A.M., Cheregi, M.C., Danet, A.F. 2009. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules, 14(1), 480–93.
  • [9] Kabasakalis, V., Siopidou, D., Moshatou, E. 2000. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chemistry, 70(3), 325–28.
  • [10] Versari, A., Mattioli, A., Parpinello, G.P., Galassi, S. 2004. Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis. Food Control, 15(5), 355–58.
  • [11] Koncki, R., Lenarczuk, T., Głab, S. 1999. Disposable integrated cuvette test for quantitative determination of vitamin C in pharmaceutical products. Analytica Chimica Acta, 379(1–2), 69–74.
  • [12] Arya, S.P., Mahajan, M., Jain, P. 2000. Non-spectrophotometric methods for the determination of Vitamin C. Analytica Chimica Acta, 417(1), 1–14.
  • [13] Lykkesfeldt, J. 2000. Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: Reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride. Analytical Biochemistry, 282(1), 89–93.
  • [14] Oliveira, E.J., Watson, D.G. 2001. Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. Journal of Chromatography B: Biomedical Sciences and Applications, 764(1–2), 3–25.
  • [15] Thangamuthu, R., Senthil Kumar, S.M., Chandrasekara Pillai, K. 2007. Direct amperometric determination of l-ascorbic acid (Vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals. Sensors and Actuators, B: Chemical, 120(2), 745–53.
  • [16] Raoof, J.B., Ojani, R., Kiani, A. 2003. Ferrocene spiked carbon paste electrode and its application to electrocatalytic determination of ascorbic acid. Bulletin of Electrochemistry, 19(1), 17–22.
  • [17] Aydoğdu Tığ, G., Günendi, G., Pekyardımcı, Ş. A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Journal of Applied Electrochemistry, 47(5), 607–18.
  • [18] Guo, Z., Luo, X., Li, Y., Li, D., Zhao, Q., Li, M., Ma, C., Zhao, Y. 2017. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid based on reduced graphene oxide-Ag/PANI modified glassy carbon electrode. Chemical Research in Chinese Universities, 33(3), 507–12.
  • [19] Savk, A., Özdil, B., Demirkan, B., Nas, M.S., Calimli, M.H., Alma, M.H., Inamuddin, Asiri, A.M., Şen, F. 2019. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Materials Science and Engineering C, 99(January), 248–54.
  • [20] Sun, H., Chao, J., Zuo, X., Su, S., Liu, X., Yuwen, L., Fan, C., Wang, L. 2014. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 4(52), 27625–29.
  • [21] Zhang, Y., Zhou, Q., Zhao, W., Chu, W., Zheng, J. 2016. Array of recessed gold nanoelectrodes formed with polymethylmethacrylate for individual detection of ascorbic acid, dopamine and uric acid. Electrochimica Acta, 212, 25–31.
  • [22] Zhang, X., Zhang, Y.C., Ma, L.X.. 2016. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 227, 488–96.
  • [23] Cai, W., Lai, J., Lai, T., Xie, H., Ye, J. 2016. Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 224, 225–32.
  • [24] Zhao, Y., Zhou, J., Jia, Z., Huo, D., Liu, Q., Zhong, D., Hu, Y., Yang, M., Bian, M., Hou, C. 2019. In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchimica Acta, 186(2), 92.
  • [25] Shao, L., Wang, X., Yang, B., Wang, Q., Tian, Q., Ji, Z., Zhang, J. 2017. A Highly Sensitive Ascorbic Acid Sensor Based on Hierarchical Polyaniline Coated Halloysite Nanotubes Prepared by Electrophoretic Deposition. Electrochimica Acta, 255, 286–97.
  • [26] Puangjan, A., Chaiyasith, S., Wichitpanya, S., Daengduang, S., Puttota, S. 2016. Electrochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid. Journal of Electroanalytical Chemistry, 782, 192–201.
  • [27] Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., Al-Assiri, M.S. 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96–100.
  • [28] Mousty, C. 2010. Biosensing applications of clay-modified electrodes: A review. Analytical and Bioanalytical Chemistry, 396(1), 315–25.
  • [29] Moraes, J.D.D., Bertolino, S.R.A., Cuffini, S.L., Ducart, D.F., Bretzke, P.E., Leonardi, G.R. 2017. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review. International Journal of Pharmaceutics, 534(1–2), 213–19.
  • [30] Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes - New trends. Applied Clay Science, 27(3–4), 159–77.
  • [31] Wu, J.H., Wang, Z., Xu, S.Y. 2007. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 103(4), 1255–62.
  • [32] Qian, P., Ai, S., Yin, H., Li, J. 2010. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchimica Acta, 168(3), 347–54.
  • [33] Yin, H., Ai, S., Shi, W., Zhu, L. 2009. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators, B: Chemical, 137(2), 747–53.
  • [34] Velde, B. 1977, Clays and clay minerals in natural and synthetic systems. Developments in Sedimentology, 21. Elsevier.
  • [35] Akbal, Ö., Erdal, E., Vural, T., Kavaz, D., Denkbaş, E.B. 2017. Comparison of protein-and polysaccharide-based nanoparticles for cancer therapy: synthesis, characterization, drug release, and interaction with a breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 193–203.
  • [36] Langer, K., Anhorn, M.G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., Faust, S., Vogel, V. 2008. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 347(1-2), 109-117.
  • [37] Hernández, K.A.H. 2016. Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest. Medicinal Chemistry. (Los. Angeles), 6, 201–210.
  • [38] Cho, K.Y., Moon, J.Y., Lee, Y.W., Lee, K.G., Yeo, J.H., Kweon, H.Y., Kim, K.H., Cho, C.S. 2003. Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules, 32(1-2), 36-42.
  • [39] Gau, V., Ma, S.C., Wang, H., Tsukuda, J., Kibler, J., Haake, D.A. 2005. Electrochemical molecular analysis without nucleic acid amplification. Methods, 37(1), 73–78.
  • [40] Feng, L., Gao, G., Zhang, C., Ma, J., Cui, D. 2014. Electrochemical ascorbic acid/hydroquinone detection on graphene electrode and the electro-active site study. Journal of Experimental Nanoscience, 9(5), 452–62.
  • [41] Li, Y., Lin, H., Peng, H., Qi, R., Luo, C. 2016. A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4 ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchimica Acta, 183(9), 2517–23. [42] Asif, M., Aziz, A., Wang, H., Wang, Z., Wang, W., Ajmal, M., Xiao, F., Chen, X., Liu, H. 2019. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid, Microchimica Acta, 186(2), 61.
  • [43] Puangjan, A., Chaiyasith, S., Taweeporngitgul, W., Keawtep J. 2017. Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Materials Science and Engineering: C, 76, 383–97.
  • [44] Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., Al-Assiri, M.S., 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96–100.

Askorbik Asit Tayini için Kil-Protein Nanokompozit Bazlı Elektrokimyasal Sensör

Year 2020, Volume: 24 Issue: 1, 80 - 89, 20.04.2020
https://doi.org/10.19113/sdufenbed.562072

Abstract

Bu makalede, montmorillonit-serisin nanokompozit (MMT-Ser NC) ile modifiye edilmiş kalem grafit elektrot (PGE) ile askorbik asit (AA) tayini ilk defa ifade edilmiştir. Nanokompozit yapılar desolvasyon tekniği ile sentezlenmiş ve glutaraldehit (GA) ile çapraz bağlanmıştır. Sentezlenen MMT-Ser NC çeşitli metotlar ile değerlendirilmiştir. Karakterizasyon çalışmaları sonucunda serisinin montmorillonit yapısı ile başarılı bir şekilde bir araya geldiği, MMT-Ser NC’lerin homojen ve eş dağılımlı olup boyutlarının 150 nm ve zeta potansiyellerinin de yaklaşık olarak -27,6 mV olduğu tespit edilmiştir. MMT-Ser NC ile modifiye edilmiş elektrot yüzeyleri dönüşümlü voltametri (CV), elektrokimyasal empedans spektroskopisi (EIS) ve taramalı elektron mikroskopisi (SEM) ile karakterize edilmiştir. Modifiye sensörün optimize koşullar altında kare dalga voltametri (SWV) ile doğrusal çalışma aralığı 10-1000 µM ve gözlenebilme sınırı (LOD) 8 µM olarak bulunmuştur. Tekrar üretilebilirlik için bağıl standart sapma ise % 4,82 (n=6) olarak hesaplanmıştır. İlaç örneği ile gerçek örnek analizi gerçekleştirilmiş ve geri kazanım değerleri % 94,64 ile % 111,2 aralığında elde edilmiştir.

Project Number

FHD-2018-17045

References

  • [1] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M. 2003. Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35.
  • [2] Pisoschi, A.M., Pop, A., Serban, A.I., Fafaneata, C. 2014. Electrochemical methods for ascorbic acid determination. Electrochimica Acta, 121, 443–460.
  • [3] Arrigoni, O., De Tullio, M.C. 2002. Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569(2), 1–9.
  • [4] Bradshaw, M.P., Barril, C., Clark, A.C., Prenzler, P.D., Scollary, G.R. 2011. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Critical Reviews in Food Science and Nutrition, 51(6), 479–98.
  • [5] Erdurak-Kiliç, C.S., Uslu, B., Dogan, B., Ozgen, U., Ozkan, S.A., Coskun, M. 2006. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. Journal of Analytical Chemistry, 61(11), 1113–20.
  • [6] Levine, M., Rumsey, S.C., Daruwala, R., Park, J.B., Wang Y. 1999. Criteria and Recommendations for Vitamin C Intake. JAMA, 281(15), 1415. [7] Kumar, S.A., Lo, P.H., Chen, S.M. 2008. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosensors and Bioelectronics, 24(4), 518–23.
  • [8] Pisoschi, A.M., Cheregi, M.C., Danet, A.F. 2009. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules, 14(1), 480–93.
  • [9] Kabasakalis, V., Siopidou, D., Moshatou, E. 2000. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chemistry, 70(3), 325–28.
  • [10] Versari, A., Mattioli, A., Parpinello, G.P., Galassi, S. 2004. Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis. Food Control, 15(5), 355–58.
  • [11] Koncki, R., Lenarczuk, T., Głab, S. 1999. Disposable integrated cuvette test for quantitative determination of vitamin C in pharmaceutical products. Analytica Chimica Acta, 379(1–2), 69–74.
  • [12] Arya, S.P., Mahajan, M., Jain, P. 2000. Non-spectrophotometric methods for the determination of Vitamin C. Analytica Chimica Acta, 417(1), 1–14.
  • [13] Lykkesfeldt, J. 2000. Determination of ascorbic acid and dehydroascorbic acid in biological samples by high-performance liquid chromatography using subtraction methods: Reliable reduction with tris[2-carboxyethyl]phosphine hydrochloride. Analytical Biochemistry, 282(1), 89–93.
  • [14] Oliveira, E.J., Watson, D.G. 2001. Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. Journal of Chromatography B: Biomedical Sciences and Applications, 764(1–2), 3–25.
  • [15] Thangamuthu, R., Senthil Kumar, S.M., Chandrasekara Pillai, K. 2007. Direct amperometric determination of l-ascorbic acid (Vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals. Sensors and Actuators, B: Chemical, 120(2), 745–53.
  • [16] Raoof, J.B., Ojani, R., Kiani, A. 2003. Ferrocene spiked carbon paste electrode and its application to electrocatalytic determination of ascorbic acid. Bulletin of Electrochemistry, 19(1), 17–22.
  • [17] Aydoğdu Tığ, G., Günendi, G., Pekyardımcı, Ş. A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Journal of Applied Electrochemistry, 47(5), 607–18.
  • [18] Guo, Z., Luo, X., Li, Y., Li, D., Zhao, Q., Li, M., Ma, C., Zhao, Y. 2017. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid based on reduced graphene oxide-Ag/PANI modified glassy carbon electrode. Chemical Research in Chinese Universities, 33(3), 507–12.
  • [19] Savk, A., Özdil, B., Demirkan, B., Nas, M.S., Calimli, M.H., Alma, M.H., Inamuddin, Asiri, A.M., Şen, F. 2019. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Materials Science and Engineering C, 99(January), 248–54.
  • [20] Sun, H., Chao, J., Zuo, X., Su, S., Liu, X., Yuwen, L., Fan, C., Wang, L. 2014. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Advances, 4(52), 27625–29.
  • [21] Zhang, Y., Zhou, Q., Zhao, W., Chu, W., Zheng, J. 2016. Array of recessed gold nanoelectrodes formed with polymethylmethacrylate for individual detection of ascorbic acid, dopamine and uric acid. Electrochimica Acta, 212, 25–31.
  • [22] Zhang, X., Zhang, Y.C., Ma, L.X.. 2016. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 227, 488–96.
  • [23] Cai, W., Lai, J., Lai, T., Xie, H., Ye, J. 2016. Controlled functionalization of flexible graphene fibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators, B: Chemical, 224, 225–32.
  • [24] Zhao, Y., Zhou, J., Jia, Z., Huo, D., Liu, Q., Zhong, D., Hu, Y., Yang, M., Bian, M., Hou, C. 2019. In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchimica Acta, 186(2), 92.
  • [25] Shao, L., Wang, X., Yang, B., Wang, Q., Tian, Q., Ji, Z., Zhang, J. 2017. A Highly Sensitive Ascorbic Acid Sensor Based on Hierarchical Polyaniline Coated Halloysite Nanotubes Prepared by Electrophoretic Deposition. Electrochimica Acta, 255, 286–97.
  • [26] Puangjan, A., Chaiyasith, S., Wichitpanya, S., Daengduang, S., Puttota, S. 2016. Electrochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid. Journal of Electroanalytical Chemistry, 782, 192–201.
  • [27] Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., Al-Assiri, M.S. 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96–100.
  • [28] Mousty, C. 2010. Biosensing applications of clay-modified electrodes: A review. Analytical and Bioanalytical Chemistry, 396(1), 315–25.
  • [29] Moraes, J.D.D., Bertolino, S.R.A., Cuffini, S.L., Ducart, D.F., Bretzke, P.E., Leonardi, G.R. 2017. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review. International Journal of Pharmaceutics, 534(1–2), 213–19.
  • [30] Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes - New trends. Applied Clay Science, 27(3–4), 159–77.
  • [31] Wu, J.H., Wang, Z., Xu, S.Y. 2007. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 103(4), 1255–62.
  • [32] Qian, P., Ai, S., Yin, H., Li, J. 2010. Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchimica Acta, 168(3), 347–54.
  • [33] Yin, H., Ai, S., Shi, W., Zhu, L. 2009. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators, B: Chemical, 137(2), 747–53.
  • [34] Velde, B. 1977, Clays and clay minerals in natural and synthetic systems. Developments in Sedimentology, 21. Elsevier.
  • [35] Akbal, Ö., Erdal, E., Vural, T., Kavaz, D., Denkbaş, E.B. 2017. Comparison of protein-and polysaccharide-based nanoparticles for cancer therapy: synthesis, characterization, drug release, and interaction with a breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 45(2), 193–203.
  • [36] Langer, K., Anhorn, M.G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., Faust, S., Vogel, V. 2008. Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 347(1-2), 109-117.
  • [37] Hernández, K.A.H. 2016. Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest. Medicinal Chemistry. (Los. Angeles), 6, 201–210.
  • [38] Cho, K.Y., Moon, J.Y., Lee, Y.W., Lee, K.G., Yeo, J.H., Kweon, H.Y., Kim, K.H., Cho, C.S. 2003. Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules, 32(1-2), 36-42.
  • [39] Gau, V., Ma, S.C., Wang, H., Tsukuda, J., Kibler, J., Haake, D.A. 2005. Electrochemical molecular analysis without nucleic acid amplification. Methods, 37(1), 73–78.
  • [40] Feng, L., Gao, G., Zhang, C., Ma, J., Cui, D. 2014. Electrochemical ascorbic acid/hydroquinone detection on graphene electrode and the electro-active site study. Journal of Experimental Nanoscience, 9(5), 452–62.
  • [41] Li, Y., Lin, H., Peng, H., Qi, R., Luo, C. 2016. A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4 ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchimica Acta, 183(9), 2517–23. [42] Asif, M., Aziz, A., Wang, H., Wang, Z., Wang, W., Ajmal, M., Xiao, F., Chen, X., Liu, H. 2019. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid, Microchimica Acta, 186(2), 61.
  • [43] Puangjan, A., Chaiyasith, S., Taweeporngitgul, W., Keawtep J. 2017. Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Materials Science and Engineering: C, 76, 383–97.
  • [44] Harraz, F.A., Faisal, M., Al-Salami, A.E., El-Toni, A.M., Almadiy, A.A., Al-Sayari, S.A., Al-Assiri, M.S., 2019. Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Materials Letters, 234, 96–100.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Oznur Akbal 0000-0003-1972-5987

Gulcin Bolat 0000-0003-2063-3238

Serdar Abaci 0000-0003-2302-0779

Project Number FHD-2018-17045
Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Akbal, O., Bolat, G., & Abaci, S. (2020). Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 80-89. https://doi.org/10.19113/sdufenbed.562072
AMA Akbal O, Bolat G, Abaci S. Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid. SDÜ Fen Bil Enst Der. April 2020;24(1):80-89. doi:10.19113/sdufenbed.562072
Chicago Akbal, Oznur, Gulcin Bolat, and Serdar Abaci. “Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 80-89. https://doi.org/10.19113/sdufenbed.562072.
EndNote Akbal O, Bolat G, Abaci S (April 1, 2020) Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 80–89.
IEEE O. Akbal, G. Bolat, and S. Abaci, “Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid”, SDÜ Fen Bil Enst Der, vol. 24, no. 1, pp. 80–89, 2020, doi: 10.19113/sdufenbed.562072.
ISNAD Akbal, Oznur et al. “Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 80-89. https://doi.org/10.19113/sdufenbed.562072.
JAMA Akbal O, Bolat G, Abaci S. Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid. SDÜ Fen Bil Enst Der. 2020;24:80–89.
MLA Akbal, Oznur et al. “Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 80-89, doi:10.19113/sdufenbed.562072.
Vancouver Akbal O, Bolat G, Abaci S. Clay-Protein Nanocomposite Based Electrochemical Sensor for the Determination of Ascorbic Acid. SDÜ Fen Bil Enst Der. 2020;24(1):80-9.

e-ISSN: 1308-6529