Research Article
BibTex RIS Cite

Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi

Year 2020, Volume: 24 Issue: 1, 152 - 157, 20.04.2020
https://doi.org/10.19113/sdufenbed.645732

Abstract

Bu çalışmada, buğday samanı biyokütlesinden hidrotermal karbonizasyon yöntemi ile biyokütle türevli karbon katı asit katalizör (BH250S) elde edilmiş, katalizörün atık biyokütle kaynaklarından 5-Hidroksimetilfurfural (5-HMF) sentezi aktivitesi belirlenen optiumum koşullarda sulu reaksiyon ortamında ticari katalizör (Amberlyst-15) ile kıyaslanmıştır. Katalizörün karakterizasyon çalışması elemental analiz, BET, SEM ve XRD analizleri yapılarak tamamlanmıştır. Atık biyokütle olarak mısır samanı, hav, linter, model bileşik olarak ise mikrokristalin selüloz kullanılmış, 5-HMF’ye dönüşüm verimleri kıyaslandığında mısır samanı, hav ve mikrokristalin selüloz için BH250S katalizörünün aktivitesinin ticari katalizörden daha yüksek olduğu gözlenmiştir. Gram biyokütle başına en yüksek 5-HMF miktarı 14,2 mg olarak BH250S katalizörü ile model bileşik mikrokristalin selülozun dönüşümünden elde edilirken, ekonomik değeri olmayan atık biyokütle havdan elde edilen değer 12,5 mg’ dır. Çalışma sonucunda ekonomik değeri düşük atık lignoselülozik/selülozik biyokütle materyalleri değerlendirilmiş, çevreye dost, sürdürülebilir ve ucuz katalitik yolla 5-HMF eldesi sağlanmıştır.

Supporting Institution

Bursa Teknik Üniversitesi

Project Number

171N09

Thanks

Bu çalışmanın gerçekleşmesindeki desteklerinden dolayı Bursa Teknik Üniversitesi BAP (171N09 nolu proje) birimine teşekkür ederiz.

References

  • [1] Mukherjee, A., Dumont, M-J., Raghavan, V. 2015. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 72, 143-183.
  • [2] Dutta, S., De, S., Alam, M., Abu-Omar, M. M., Saha, B., 2012. Direct conversion of cellulose and lignocellulosic biomass into chemicalsand biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8-15.
  • [3] Rathod, P. V. and Jadhav V. H., 2018. Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry and Engineering, 6, 5766−5771.
  • [4] Chang, C., Xu, G., Jiang, X., 2012. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 121, 93-99.
  • [5] Dutta, S., Yu, I. K. M., Tsang, D. C. W., Ng, Y. H., Ok, Y. S., Sherwood, J., Clark, J. H., 2019. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 372, 992-1006.
  • [6] Fukuhara, K., Nakajima, K., Kitano, M., Kato, H., Hayashi, S., Hara, M. 2011. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. Chemsuschem, 4:778–784.
  • [7] Hara, M. 2010. Biomass conversion by a solid acid catalyst. Energy & Environmental Science, 3:601–607.
  • [8] Uskan, B. 2009. Odun Talaşının Hidrotermal Dönüşümünden Elde Edilen Kimyasalların Karakterizasyonu. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 109s, Ankara.
  • [9] ASTM, 2009. Standard Test Method for Determination of Acid-Insoluble Residue in Biomass, Pennsylvania United States: ASTM
  • [10] Foyle, T., Jennıngs, L., Mulcahy, P. 2007. Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresource Technology, 98, 3026-3036.
  • [11] Sun, R. C., Tomkınson, J. 2002. Characterizations of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydrate Polymers, 50, 263-271.
  • [12] Gan, L., Zhu, J., Lv, L. 2017. Cellulose hydrolysis catalyzed by highly acidic ligninderived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose, 24, 5327-5339.
  • [13] Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M. 2008. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of American Chemical Society, 130, 12787-12793.
  • [14] Wu, Y., Fu, Z.,Yin, D., Xu, Q., Liu, F., Lu, C., Mao, L. 2010. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass Char sulfonic acids. Green Chemistry,12, 696–700.
  • [15] Irmak, S., Meryemoglu, B., Sandip, A., Subbiah, J., Mitchell, R. B., Sarath, G. 2018. Microwave pretreatment effects on switchgrass and miscanthussolubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass and Bioenergy, 108, 48-54.
  • [16] Huang Y-B. ve Fu Y. 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 15, 1095-1111.
  • [17] Yan, L., Liu, N., Wang, Y., Machida, H., & Qi, X. 2014. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst. Bioresource Technology, 173, 462-466.

Synthesis of 5‐Hydroxymethylfurfural from Waste Biomass Feedstocks Using Carbon Solid Acid Catalyst

Year 2020, Volume: 24 Issue: 1, 152 - 157, 20.04.2020
https://doi.org/10.19113/sdufenbed.645732

Abstract

In this study biomass derived carbon solid acid catalyst (BH250S) was obtained by hydrothermal carbonization method from wheat straw, 5-HMF synthesis activity of the catalyst from waste biomass sources in optimum conditions was determined and compared with commercial catalyst (Amberlyst-15). Characterization of the catalyst was completed by elemental analysis, BET, SEM and XRD analysis. Corn straw, fluff and linter were used as waste biomass, microcrystalline cellulose was used as a model compound and conversion efficiency to 5-HMF was found to be higher than that of commercial catalyst for BH250S for corn straw, fluff and microcrystalline cellulose. The highest amount of 5-HMF per gram biomass was obtained from the conversion of model compound microcrystalline cellulose with BH250S catalyst was 14.2 mg while the value obtained from economically non-useful waste fluff was 12.5 mg. As a result of this study, waste lignocellulosic/cellulosic biomass materials with low economic value were evaluated and 5-HMF was obtained by a eco-friendly, sustainable and cheap catalytic method.

Project Number

171N09

References

  • [1] Mukherjee, A., Dumont, M-J., Raghavan, V. 2015. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy, 72, 143-183.
  • [2] Dutta, S., De, S., Alam, M., Abu-Omar, M. M., Saha, B., 2012. Direct conversion of cellulose and lignocellulosic biomass into chemicalsand biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8-15.
  • [3] Rathod, P. V. and Jadhav V. H., 2018. Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry and Engineering, 6, 5766−5771.
  • [4] Chang, C., Xu, G., Jiang, X., 2012. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 121, 93-99.
  • [5] Dutta, S., Yu, I. K. M., Tsang, D. C. W., Ng, Y. H., Ok, Y. S., Sherwood, J., Clark, J. H., 2019. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chemical Engineering Journal, 372, 992-1006.
  • [6] Fukuhara, K., Nakajima, K., Kitano, M., Kato, H., Hayashi, S., Hara, M. 2011. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. Chemsuschem, 4:778–784.
  • [7] Hara, M. 2010. Biomass conversion by a solid acid catalyst. Energy & Environmental Science, 3:601–607.
  • [8] Uskan, B. 2009. Odun Talaşının Hidrotermal Dönüşümünden Elde Edilen Kimyasalların Karakterizasyonu. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 109s, Ankara.
  • [9] ASTM, 2009. Standard Test Method for Determination of Acid-Insoluble Residue in Biomass, Pennsylvania United States: ASTM
  • [10] Foyle, T., Jennıngs, L., Mulcahy, P. 2007. Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresource Technology, 98, 3026-3036.
  • [11] Sun, R. C., Tomkınson, J. 2002. Characterizations of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydrate Polymers, 50, 263-271.
  • [12] Gan, L., Zhu, J., Lv, L. 2017. Cellulose hydrolysis catalyzed by highly acidic ligninderived carbonaceous catalyst synthesized via hydrothermal carbonization. Cellulose, 24, 5327-5339.
  • [13] Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M. 2008. Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of American Chemical Society, 130, 12787-12793.
  • [14] Wu, Y., Fu, Z.,Yin, D., Xu, Q., Liu, F., Lu, C., Mao, L. 2010. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass Char sulfonic acids. Green Chemistry,12, 696–700.
  • [15] Irmak, S., Meryemoglu, B., Sandip, A., Subbiah, J., Mitchell, R. B., Sarath, G. 2018. Microwave pretreatment effects on switchgrass and miscanthussolubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass and Bioenergy, 108, 48-54.
  • [16] Huang Y-B. ve Fu Y. 2013. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 15, 1095-1111.
  • [17] Yan, L., Liu, N., Wang, Y., Machida, H., & Qi, X. 2014. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst. Bioresource Technology, 173, 462-466.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Burçak Kaya Özsel 0000-0003-2190-3834

Project Number 171N09
Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Kaya Özsel, B. (2020). Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 152-157. https://doi.org/10.19113/sdufenbed.645732
AMA Kaya Özsel B. Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi. SDÜ Fen Bil Enst Der. April 2020;24(1):152-157. doi:10.19113/sdufenbed.645732
Chicago Kaya Özsel, Burçak. “Karbon Katı Asit Katalizör Ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 152-57. https://doi.org/10.19113/sdufenbed.645732.
EndNote Kaya Özsel B (April 1, 2020) Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 152–157.
IEEE B. Kaya Özsel, “Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi”, SDÜ Fen Bil Enst Der, vol. 24, no. 1, pp. 152–157, 2020, doi: 10.19113/sdufenbed.645732.
ISNAD Kaya Özsel, Burçak. “Karbon Katı Asit Katalizör Ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 152-157. https://doi.org/10.19113/sdufenbed.645732.
JAMA Kaya Özsel B. Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi. SDÜ Fen Bil Enst Der. 2020;24:152–157.
MLA Kaya Özsel, Burçak. “Karbon Katı Asit Katalizör Ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 152-7, doi:10.19113/sdufenbed.645732.
Vancouver Kaya Özsel B. Karbon Katı Asit Katalizör ile Atık Biyokütle Kaynaklarından 5-Hidroksimetilfurfural Eldesi. SDÜ Fen Bil Enst Der. 2020;24(1):152-7.

e-ISSN: 1308-6529