Research Article
BibTex RIS Cite

The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping

Year 2020, Volume: 24 Issue: 1, 178 - 187, 20.04.2020
https://doi.org/10.19113/sdufenbed.661078

Abstract

The heterojunction photodiodes with undoped ZnO and Indium (In) doping ZnO thin films have been grown on p type silicon wafer by solution based spin coating method. The crystal structure analyzes of the films show that they have amorphous nature. The electrical characterizations of diodes have been performed by classical I-V and C-G-V technique. The minimum ideality factor of 3.97 and minimum series resistance of 7.2 kΩ have been recorded from 5% In doping ZnO/p-Si diode. The phototransient measurements show that photodiodes react fast to visible light and have a good reproducibility switching cycle. Similarly, the highest photosensitivity of 3.15×103 and responsivity of 2.02 A/W have been obtained from 5% In doping ZnO/p-Si photodiode. This study indicates that the doping of In improves the electrical and optoelectrical performance of ZnO based photodiodes.

Thanks

The experimental and characterization of this study were carried out in Semiconductors Characterization Laboratory of Eskişehir Technical University. The author would like to thank Prof. Dr. Mujdat CAGLAR and Prof. Dr. Yasemin ÇAGLAR for providing facilities of their laboratory.

References

  • [1] Ma, M., Wang, Z., Zhou, J., Liang, C., Zhang, D., Zhu, D. 2019. Effect of CeO2 doping on phase structure and microstructure of alcocufemnni alloy coating, Materials Research, 22(1).
  • [2] Keskenler, E. F., Turgutb, G. 2016. Synthesis and properties of sol-gel derived transparent ZnO thin films: Effect of indium doping. Journal of Ceramic Processing Research, 17(12), 1254-1259.
  • [3] Orita, M., Ohta, H., Hirano, M., Hosono, H. 2000. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Applied Physics Letters, 77(25), 4166-4168.
  • [4] Richter, R. S., Yaya, A., Dodoo-Arhin, D., Agyei-Tuffour, B., Musembi, R. J., Onwona-Agyeman, B. 2018. Preparation and characterization of indium and gallium doped transparent ZnO films for Solar Cell Applications. Oriental Journal of Chemistry, 34(5), 2325-2331.
  • [5] Das, A., Saha, R., Karmakar, A., Chattopadhyay, S., Palit, M., Dutta, H. S. 2016. Self-powered rapid binary UV photoswitching with n-ZnO NW/p-Si photodiode. MicroCom, International Conference on Microelectronics, Computing and Communications, 17-20 December, Egypt, 1-5.
  • [6] Aksoy, S., Caglar, Y. 2019. Synthesis of Mn doped ZnO nanopowders by MW-HTS and its structural, morphological and optical characteristics. Journal of Alloys and Compounds, 781, 929-935.
  • [7] Yıldırım, M., Kocyigit, A. 2018. Characterization of Al/In: ZnO/p-Si photodiodes for various In doped level to ZnO interfacial layers. Journal of Alloys and Compounds, 768, 1064-1075.
  • [8] Lee, J. H., Jang, B. R., Lee, J. Y., Kim, H. S., Jang, N. W., Kong, B. H., Yun, Y. 2011. Effect of indium mole fraction on the diode characteristics of ZnO: In/p-Si (111) heterojunctions. Japanese Journal of Applied Physics, 50(3R), 031101.
  • [9] Silva-Lopez, H. E., Marcelino, B. S., Guillen-Cervantes, A., Zelaya-Angel, O., Ramirez-Bon, R. 2018. Physical properties of sputtered indium-doped ZnO films deposited on flexible transparent substrates. Materials Research, 21(6).
  • [10] Alamdari, S., Tafreshi, M. J., Ghamsari, M. S. 2017. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Materials Letters, 197, 94-97.
  • [11] Kim, J., Choi, J. H., Chae, H., Kim, H. 2014. Effect of indium doping on low-voltage ZnO nanocrystal field-effect transistors with ion-gel gate dielectric. Japanese Journal of Applied Physics, 53(7), 071101.
  • [12] Cao, Y., Miao, L., Tanemura, S., Tanemura, M., Kuno, Y., Hayashi, Y., Mori, Y. 2006. Optical properties of indium-doped ZnO films. Japanese Journal of Applied Physics, 45(3R), 1623-1628.
  • [13] Chirakkara, S., Krupanidhi, S. B. 2012. Gallium and indium co‐doped ZnO thin films for white light emitting diodes. Physica Status Solidi (RRL)–Rapid Research Letters, 6(1), 34-36.
  • [14] Tsuboi, T., Yamamoto, K., Nakamura, A., Temmyo, J. 2010. Indium-doped MgxZn1-xO films for ZnO-based heterojunction diodes. Japanese Journal of Applied Physics, 49(4S), 04DG13.
  • [15] Mahmood, K., Khalid, A., Ahmad, S. W., & Mehran, M. T. 2018. Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surface and Coatings Technology, 352, 231-237.
  • [16] Luna-Arredondo, E. J., Maldonado, A., Asomoza, R., Acosta, D. R., Melendez-Lira, M. A., Olvera, M. D. L. L. 2005. Indium-doped ZnO thin films deposited by the sol–gel technique. Thin Solid Films, 490(2), 132-136.
  • [17] Caglar, Y., Caglar, M., Ilican, S. 2018. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes. Optik, 164, 424-432.
  • [18] Ruzgar, S., Caglar, M. 2019. The effect of Sn on electrical performance of zinc oxide based thin film transistor. Journal of Materials Science: Materials in Electronics, 30(1), 485-490.
  • [19] Singh, S. K., Hazra, P. 2018. Performance analysis of undoped and Mg-doped ZnO/p-Si heterojunction diodes grown by sol–gel technique. Journal of Materials Science: Materials in Electronics, 29(6), 5213-5223.
  • [20] Sze, S. M. 1984. Physics of semiconductor devices, Wiley Interscience, New York, 465s.
  • [21] Hudait, M. K., Krupanidhi, S. B. 2001. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Physica B: Condensed Matter, 307(1-4), 125-137.
  • [22] Kamruzzaman, M., Zapien, J. A. 2017. Reduction of schottky barrier height, turn on voltage, leakage current and high responsivity of li doped ZnO nanorod arrays based schottky diode. Journal of Nanoscience and Nanotechnology, 17(7), 5061-5072.
  • [23] Çetinkaya, H. G., Sevgili, Ö., Altındal, Ş. 2019. The fabrication of Al/p-Si (MS) type photodiode with (% 2 ZnO-doped CuO) interfacial layer by sol gel method and their electrical characteristics. Physica B: Condensed Matter, 560, 91-96.
  • [24] Aslan, F., Esen, H., Yakuphanoglu, F. 2019. Electrical and fotoconducting characterization of Al/coumarin: ZnO/Al novel organic-inorganic hybrid photodiodes. Journal of Alloys and Compounds, 789, 595-606.
  • [25] Norde, H. 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052-5053.
  • [26] Al-Hazmi, F. E., Yakuphanoglu, F. 2018. Photoconducting and photovoltaic properties of ZnO:TiO2 composite/p-silicon heterojunction photodiode. Silicon, 10(3), 781-787.
  • [27] Xu, X., Shukla, S., Liu, Y., Yue, B., Bullock, J., Su, L., Ager, J. W. 2018. Solution‐processed transparent self‐powered p‐CuS‐ZnS/n‐ZnO UV photodiode. physica status solidi (RRL)–Rapid Research Letters, 12(2), 1700381.
  • [28] Al-Hardan, N. H., Jalar, A., Hamid, M. A., Keng, L. K., Ahmed, N. M., Shamsudin, R. 2014. A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sensors and Actuators A: Physical, 207, 61-66.
  • [29] Kang, H., Park, J., Choi, T., Jung, H., Lee, K. H., Im, S., Kim, H. 2012. n-ZnO: N/p-Si nanowire photodiode prepared by atomic layer deposition. Applied Physics Letters, 100(4), 041117.
  • [30] Sbeta, M., Yildiz, A. 2019. Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles. Materials Research Express, 6(8), 085018.
  • [31] Ameen, B. A. H., Yildiz, A., Farooq, W. A., Yakuphanoglu, F. 2019. Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions. Silicon, 11(1), 563-571.
  • [32] Khusayfan, N. M. 2016. Electrical and photoresponse properties of Al/graphene oxide doped NiO nanocomposite/p-Si/Al photodiodes. Journal of Alloys and Compounds, 666, 501-506.
  • [33] Farooq, A., Karimov, K. S., Ahmed, N., Ali, T., Alamgir, M. K., Usman, M. 2015. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector. Physica B: Condensed Matter, 457, 17-21.
  • [34] Orak, I., Kocyigit, A., Turut, A. 2017. The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique. Journal of Alloys and Compounds, 691,873-879.

İndyum Katkısı ile ZnO Tabanlı Fotodiyotun Fototepki Özelliğinin Geliştirilmesi

Year 2020, Volume: 24 Issue: 1, 178 - 187, 20.04.2020
https://doi.org/10.19113/sdufenbed.661078

Abstract

Katkısız ZnO ve İndiyum (In) katkılı ZnO ince filmler sol-gel spin kaplama yöntemi ile p-Si substratı üzerinde büyütülelerek, heteroeklem fotodiyotlar üretilmiştir. Filmlerin kristal yapı analizleri, amorf yapıya sahip olduklarını göstermektedir. Diyotların elektriksel karakterizasyonu geleneksel I-V ve C-G-V tekniği ile gerçekleştirilmiştir. Minimum idealite faktörü ve minimum seri direnç 3.97 ve 7.2 kΩ olarak % 5 In katkılı ZnO/p-Si diyotundan elde edilmiştir. Fotogeçiş ölçümleri, fotodiyotların görünür ışığa hızlı tepki verdiğini ve iyi bir tekrarlanabilirlik anahtarlama döngüsüne sahip olduğunu göstermektedir. Benzer şekilde, 3.15x103'lük en yüksek ışığa duyarlılık ve 2.02 A/W'nin duyarlılığı % 5 Indiyum katkılı ZnO/p-Si fotodiyotundan elde edilmiştir. Bu çalışma, Indiyum katkısının ZnO bazlı fotodiyotların elektriksel ve optoelektrik performanslarını geliştirdiğini göstermektedir.

References

  • [1] Ma, M., Wang, Z., Zhou, J., Liang, C., Zhang, D., Zhu, D. 2019. Effect of CeO2 doping on phase structure and microstructure of alcocufemnni alloy coating, Materials Research, 22(1).
  • [2] Keskenler, E. F., Turgutb, G. 2016. Synthesis and properties of sol-gel derived transparent ZnO thin films: Effect of indium doping. Journal of Ceramic Processing Research, 17(12), 1254-1259.
  • [3] Orita, M., Ohta, H., Hirano, M., Hosono, H. 2000. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Applied Physics Letters, 77(25), 4166-4168.
  • [4] Richter, R. S., Yaya, A., Dodoo-Arhin, D., Agyei-Tuffour, B., Musembi, R. J., Onwona-Agyeman, B. 2018. Preparation and characterization of indium and gallium doped transparent ZnO films for Solar Cell Applications. Oriental Journal of Chemistry, 34(5), 2325-2331.
  • [5] Das, A., Saha, R., Karmakar, A., Chattopadhyay, S., Palit, M., Dutta, H. S. 2016. Self-powered rapid binary UV photoswitching with n-ZnO NW/p-Si photodiode. MicroCom, International Conference on Microelectronics, Computing and Communications, 17-20 December, Egypt, 1-5.
  • [6] Aksoy, S., Caglar, Y. 2019. Synthesis of Mn doped ZnO nanopowders by MW-HTS and its structural, morphological and optical characteristics. Journal of Alloys and Compounds, 781, 929-935.
  • [7] Yıldırım, M., Kocyigit, A. 2018. Characterization of Al/In: ZnO/p-Si photodiodes for various In doped level to ZnO interfacial layers. Journal of Alloys and Compounds, 768, 1064-1075.
  • [8] Lee, J. H., Jang, B. R., Lee, J. Y., Kim, H. S., Jang, N. W., Kong, B. H., Yun, Y. 2011. Effect of indium mole fraction on the diode characteristics of ZnO: In/p-Si (111) heterojunctions. Japanese Journal of Applied Physics, 50(3R), 031101.
  • [9] Silva-Lopez, H. E., Marcelino, B. S., Guillen-Cervantes, A., Zelaya-Angel, O., Ramirez-Bon, R. 2018. Physical properties of sputtered indium-doped ZnO films deposited on flexible transparent substrates. Materials Research, 21(6).
  • [10] Alamdari, S., Tafreshi, M. J., Ghamsari, M. S. 2017. The effects of indium precursors on the structural, optical and electrical properties of nanostructured thin ZnO films. Materials Letters, 197, 94-97.
  • [11] Kim, J., Choi, J. H., Chae, H., Kim, H. 2014. Effect of indium doping on low-voltage ZnO nanocrystal field-effect transistors with ion-gel gate dielectric. Japanese Journal of Applied Physics, 53(7), 071101.
  • [12] Cao, Y., Miao, L., Tanemura, S., Tanemura, M., Kuno, Y., Hayashi, Y., Mori, Y. 2006. Optical properties of indium-doped ZnO films. Japanese Journal of Applied Physics, 45(3R), 1623-1628.
  • [13] Chirakkara, S., Krupanidhi, S. B. 2012. Gallium and indium co‐doped ZnO thin films for white light emitting diodes. Physica Status Solidi (RRL)–Rapid Research Letters, 6(1), 34-36.
  • [14] Tsuboi, T., Yamamoto, K., Nakamura, A., Temmyo, J. 2010. Indium-doped MgxZn1-xO films for ZnO-based heterojunction diodes. Japanese Journal of Applied Physics, 49(4S), 04DG13.
  • [15] Mahmood, K., Khalid, A., Ahmad, S. W., & Mehran, M. T. 2018. Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surface and Coatings Technology, 352, 231-237.
  • [16] Luna-Arredondo, E. J., Maldonado, A., Asomoza, R., Acosta, D. R., Melendez-Lira, M. A., Olvera, M. D. L. L. 2005. Indium-doped ZnO thin films deposited by the sol–gel technique. Thin Solid Films, 490(2), 132-136.
  • [17] Caglar, Y., Caglar, M., Ilican, S. 2018. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes. Optik, 164, 424-432.
  • [18] Ruzgar, S., Caglar, M. 2019. The effect of Sn on electrical performance of zinc oxide based thin film transistor. Journal of Materials Science: Materials in Electronics, 30(1), 485-490.
  • [19] Singh, S. K., Hazra, P. 2018. Performance analysis of undoped and Mg-doped ZnO/p-Si heterojunction diodes grown by sol–gel technique. Journal of Materials Science: Materials in Electronics, 29(6), 5213-5223.
  • [20] Sze, S. M. 1984. Physics of semiconductor devices, Wiley Interscience, New York, 465s.
  • [21] Hudait, M. K., Krupanidhi, S. B. 2001. Doping dependence of the barrier height and ideality factor of Au/n-GaAs Schottky diodes at low temperatures. Physica B: Condensed Matter, 307(1-4), 125-137.
  • [22] Kamruzzaman, M., Zapien, J. A. 2017. Reduction of schottky barrier height, turn on voltage, leakage current and high responsivity of li doped ZnO nanorod arrays based schottky diode. Journal of Nanoscience and Nanotechnology, 17(7), 5061-5072.
  • [23] Çetinkaya, H. G., Sevgili, Ö., Altındal, Ş. 2019. The fabrication of Al/p-Si (MS) type photodiode with (% 2 ZnO-doped CuO) interfacial layer by sol gel method and their electrical characteristics. Physica B: Condensed Matter, 560, 91-96.
  • [24] Aslan, F., Esen, H., Yakuphanoglu, F. 2019. Electrical and fotoconducting characterization of Al/coumarin: ZnO/Al novel organic-inorganic hybrid photodiodes. Journal of Alloys and Compounds, 789, 595-606.
  • [25] Norde, H. 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052-5053.
  • [26] Al-Hazmi, F. E., Yakuphanoglu, F. 2018. Photoconducting and photovoltaic properties of ZnO:TiO2 composite/p-silicon heterojunction photodiode. Silicon, 10(3), 781-787.
  • [27] Xu, X., Shukla, S., Liu, Y., Yue, B., Bullock, J., Su, L., Ager, J. W. 2018. Solution‐processed transparent self‐powered p‐CuS‐ZnS/n‐ZnO UV photodiode. physica status solidi (RRL)–Rapid Research Letters, 12(2), 1700381.
  • [28] Al-Hardan, N. H., Jalar, A., Hamid, M. A., Keng, L. K., Ahmed, N. M., Shamsudin, R. 2014. A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sensors and Actuators A: Physical, 207, 61-66.
  • [29] Kang, H., Park, J., Choi, T., Jung, H., Lee, K. H., Im, S., Kim, H. 2012. n-ZnO: N/p-Si nanowire photodiode prepared by atomic layer deposition. Applied Physics Letters, 100(4), 041117.
  • [30] Sbeta, M., Yildiz, A. 2019. Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles. Materials Research Express, 6(8), 085018.
  • [31] Ameen, B. A. H., Yildiz, A., Farooq, W. A., Yakuphanoglu, F. 2019. Solar light photodetectors based on nanocrystalline zinc oxide cadmium doped/p-Si heterojunctions. Silicon, 11(1), 563-571.
  • [32] Khusayfan, N. M. 2016. Electrical and photoresponse properties of Al/graphene oxide doped NiO nanocomposite/p-Si/Al photodiodes. Journal of Alloys and Compounds, 666, 501-506.
  • [33] Farooq, A., Karimov, K. S., Ahmed, N., Ali, T., Alamgir, M. K., Usman, M. 2015. Copper phthalocyanine and metal free phthalocyanine bulk heterojunction photodetector. Physica B: Condensed Matter, 457, 17-21.
  • [34] Orak, I., Kocyigit, A., Turut, A. 2017. The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique. Journal of Alloys and Compounds, 691,873-879.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şerif Rüzgar 0000-0002-4964-2202

Publication Date April 20, 2020
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Rüzgar, Ş. (2020). The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 178-187. https://doi.org/10.19113/sdufenbed.661078
AMA Rüzgar Ş. The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping. J. Nat. Appl. Sci. April 2020;24(1):178-187. doi:10.19113/sdufenbed.661078
Chicago Rüzgar, Şerif. “The Improvement Photoresponsivity of ZnO Based Photodiode With Indium Doping”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 1 (April 2020): 178-87. https://doi.org/10.19113/sdufenbed.661078.
EndNote Rüzgar Ş (April 1, 2020) The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 1 178–187.
IEEE Ş. Rüzgar, “The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping”, J. Nat. Appl. Sci., vol. 24, no. 1, pp. 178–187, 2020, doi: 10.19113/sdufenbed.661078.
ISNAD Rüzgar, Şerif. “The Improvement Photoresponsivity of ZnO Based Photodiode With Indium Doping”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (April 2020), 178-187. https://doi.org/10.19113/sdufenbed.661078.
JAMA Rüzgar Ş. The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping. J. Nat. Appl. Sci. 2020;24:178–187.
MLA Rüzgar, Şerif. “The Improvement Photoresponsivity of ZnO Based Photodiode With Indium Doping”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 1, 2020, pp. 178-87, doi:10.19113/sdufenbed.661078.
Vancouver Rüzgar Ş. The Improvement Photoresponsivity of ZnO Based Photodiode with Indium Doping. J. Nat. Appl. Sci. 2020;24(1):178-87.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.