Research Article
BibTex RIS Cite

Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition

Year 2020, Volume: 24 Issue: 2, 306 - 316, 26.08.2020
https://doi.org/10.19113/sdufenbed.573432

Abstract

Microalgae can generally maintain the high amounts of biomass in the wastewater and they can be converted from biomass to bio-butanol. Bio-butanol is a liquid biofuel and it has significant physical and chemical properties. In this study, we carried out bio-butanol production from Borodinellopsis texensis CCALA 892 grown in various concentrations of the municipal wastewater. Also, we determined biochemical composition ratios of microalgae samples and studied the some antioxidant enzymes such as catalase, superoxide dismutase and ascorbate peroxidase. In the current study, bio-butanol was produced by the acetone-butanol-ethanol (ABE) fermentation method. The microalgae sample grown in 25% of wastewater had the highest biomass productivity among five wastewater samples with 0.114 ± 0.002 g L-1d-1. The carbohydrate and protein concentrations of control group increased day by day and their values reached stationary phases at seven days. The sample grown in 25% of wastewater had the highest carbohydrate concentration with 0.30 g L-1 and protein concentration with 0.35 g L-1 at the stationary phase. The maximum enzyme activities for catalase, superoxide dismutase and ascorbate peroxidase were 15.33 ± 0.88, 8.67 ± 0.67 and 33 ± 1.53 µmole/mg, respectively at 25% of wastewater. In addition, bio-butanol content of B. texensis CCALA 892 was 3.63 ± 0.21 g L-1 and its bio-butanol yield was found as 0.18 ± 0.011 g/g sugar. In the next study, we can examine large scale butanol production.

Thanks

Author would like to thank Van-YYU-Department of Environmental Engineering for technical support.

References

  • [1] Harun, R., Danquah, M. K., Forde, G. M. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85(2), 199-203.
  • [2] Sivakumar, G., Vail, D.R., Xu, J., Burner, D.M., Jr, J.O.L., Ge, X., Weathers, P.J. 2010. Bioethanol and biodiesel: Alternative liquid fuels for future generations. Engineering in Life Science, 10(1), 8-18.
  • [3] Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A. 2010. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Management, 30, 1860-1870.
  • [4] Keasling, J. D., Chou, H. 2008. Metabolic engineering delivers next-generation biofuels. Nature Biotechnology, 26(3), 298-299.
  • [5] Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B. 2020. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, 122804.
  • [6] Kumar, M., Enamala, S., Chavali, M., Donepudi, J. 2018. Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable Sustainable Energy Reviews, 94, 49-68.
  • [7] Fan, H., Wang, K., Wang, C., Yu, F., He, X. 2020. A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environmental Technology & Innovation, 19, 100849.
  • [8] Bakonyi, P., Kumar, G., Béla, K., Kim, S., Koter, S., Kujawski, W., Nemestóthy, N., Peter, J., Pientka, Z. 2018. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen. Bioresource Technology, 270, 643-655.
  • [9] Zhuang, L., Li, M., Hao, H. 2020. Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource Technology, 308, 123320.
  • [10] Ometto, F., Quiroga, G., Pavel, P., Jefferson, B., Villa, R. 2014. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350-361.
  • [11] Lerc, Z., Nadiah, W., Kadir, A., Kee, M., Uemura, Y., Suparmaniam, U., Wei, J., Loke, P. 2020. The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renewable Energy, 154, 1083-1091.
  • [12] Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Frontiers in Microbiology, 7, 546.
  • [13] Park, S., Ha, T., Nguyen, T., Jin, E. 2019. Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. Bioresource Technology, 292, 121953.
  • [14] Shahkolaie, S. S., Baranimotlagh, M., Dordipour, E., Khormali, F. 2020. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany, 128, 132-140.
  • [15] Yu, Y., Zhou, W., Liang, X., Zhou, K., Lin, X. 2019. Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance. Environmental Pollution, 252, 941-949.
  • [16] Abeyrathne, E. D. N. S., Huang, X., Ahn, D. U. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides-A review. Poultry Science, 97, 1462-1468.
  • [17] Meyer, A. S., Isaksen, A. 1995. Application of enzymes as food antioxidants. Trends in Food Science & Technology, 6, 300-304.
  • [18] Ntagkas, N., Woltering, E. J., Marcelis, L. F. M. 2018. Light regulates ascorbate in plants: An integrated view on physiology and biochemistry. Environmental and Experimental Botany, 147, 271-280.
  • [19] Van Doorn, W.G., Ketsa, S. 2014. Postharvest biology and technology cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biology and Technology, 95, 64-69.
  • [20] Guiry, M. D. in Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (Access Date: 05. 05.2020).
  • [21] Andersen, R. A. 2005. Algal Culturing Techniques. 1st Edition. Elsevier Academic press, USA, 429s.
  • [22] OECD, 2010. OECD Guidelines for the Testing of Chemicals (Technical Report 209). Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation). Guideline 16. https://www.oecdilibrary.org/content/publication/9789264070080-en (Access Date: 05.05.2020).
  • [23] Zouboulis, A. I., Gkotsis, P. K., Zamboulis, D. X., Mitrakas, M. G. 2017. Application of powdered activated carbon (PAC) for membrane fouling control in a pilot-scale MBR system. Water Science and Technology, 75(10), 2350-2357.
  • [24] Onay, M. 2018. Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel, 239, 1315-1323.
  • [25] Onay, M. 2018. Bioethanol production from Nannochloropsis gaditana in municipal wastewater. Energy Procedia, 153, 253-257.
  • [26] Weis, V. M., Verde, E. A., Reynolds, W. S. 2002. Characterization of a Short Form Perdinin Chlorophyll Protein (PCP) cDNA and Protein from the Symbiotic Dinoflagellate Symbiodinium muscatinei (Dinophyceae) from the Sea Anemone Anthopleura elegantissima. Journal of Phycology, 38, 157-163.
  • [27] Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Analitical Biochemistry, 72, 248-254.
  • [28] Zhao, G., Chen, X., Wang, L., Zhou, S., Feng, H., Chen, W.N., Lau, R. 2013. Ultrasound Assisted Extraction of Carbohydrates from Microalgae as Feedstock for Yeast Fermentation. Bioresource Technology, 128, 337-344.
  • [29] Goth, L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143-151.
  • [30] Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 44, 276-287.
  • [31] Onay, M. 2020. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel, 273, 117795.
  • [32] Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiology, 22, 867-880.
  • [33] Maiti, S., Sarma, S. J., Brar, S. K., Le Bihan, Y., Drogui, P., Buelna, G., Verma, M., Soccol, C. R. 2015. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol Fermenter. Talanta, 141, 116-121.
  • [34] Onay, M. 2018. Investigation of biobutanol efficiency of Chlorella sp. cultivated in municipal wastewater. Journal of Geoscience and Environment Protection, 06, 40-50.
  • [35] Neofotis, P., Huang, A., Sury, K., Chang, W., Joseph, F., Gabr, A., Twary, S., Qiu, W., Holguin, O., Polle, J. E. W. 2016. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15, 164-178.
  • [36] Gazioğlu, S. N. 2020. Mikroalglerden biyokütle üretimi için 1’lik kabarcıklı kolon fotobiyoreaktörün tasarımı. Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, 63s, Van.
  • [37] Chiu, S. Y., Kao, C., Chen, T., Chang, Y., Kuo, C., Lin, C. 2015. Cultivation of microalgal chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189.
  • [38] Martin, C., De la Noüe, J., Picard, G. 1985. Intensive Culture of Freshwater Microalgae on Aerated Pig Manure. Biomass, 7, 245-259.
  • [39] Cai, T., Park, S. Y., Li, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
  • [40] Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.K., Lee, T. 2013. Microalgae Cultivation for Bioenergy Production Using Wastewaters from a Municipal WWTP as Nutritional Sources. Bioresource Technology, 131, 515-520.
  • [41] De la Noüe, J., Laliberté, G., Proulx, D. 1992. Algae and waste water. Journal of Applied Phycology, 4, 247-254.
  • [42] Green, F. B., Lundquist, T., Oswald, W. 1995. Energetics of advanced integrated wastewater pond systems. Water Science & Technology, 31, 9-20.
  • [43] De-Bashan, L. E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101, 1611-1627.
  • [44] Hoffmann, J. P. 1998. Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757-763.
  • [45] Mallick, N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 15, 377-90.
  • [46] Salama, E. S., Kurade, M. B., Abou-Shanab, R. A., El-Dalatony, M. M., Yang, I. S., Min, B. 2017. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew able Sustainable Energy Review, 79, 1189-1211.
  • [47] Aketo, T., Hoshikawa, Y., Nojima, D., Yabu, Y., Maeda, Y., Yoshino, T., Takano, H., Tanaka, T. 2020. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Journal of Bioscience and Bioengineering, 129, 565-572.
  • [48] Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., Zhong, Y. 2020. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804.
  • [49] Leite, L. D. S., Teresa, M., Daniel, L. A. 2019. Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering, 31, 1-7.
  • [50] Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W., Chang, J. S. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10.
  • [51] Wang, J., Yin, Y. 2018. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microbial Cell Factories, 17(1), 22-37.
  • [52] Ferreira, A., Marques, P., Ribeiro, B., Assemany, P., de Mendonça, H. V., Barata, A., Oliveira, A. C., Reis, A., Pinheiro, H. M., Gouveia, L. 2018. Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research, 164, 32-38.
  • [53] Dasgupta, C. N., Suseela, M., Mandotra, S., Kumar, P., Pandey, M. K., Toppo, K. 2015. Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Applied Energy, 146, 202-208.
  • [54] Cheng, D.L., Ngo, H. H., Guo, W.S. 2019. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresource Technology, 275, 109-122.
  • [55] Yang, W., Gao, X., Wu, Y., Wan, L., Tan, L., Yuan, S. 2020. Ecotoxicology and Environmental Safety The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, 110484.
  • [56] Zhu, Z., Wang, Suchun, Zhao, F., Wang, Shu-guang, Liu, F., Liu, G. 2019. Joint toxicity of microplastics with triclosan to marine microalgae. Environmental Pollution, 246, 509-517.
  • [57] Yun, C., Hwang, K., Han, S., Ri, H. 2019. The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass and Bioenergy, 127, 105277.
  • [58] Wang, Y., Guo, W., Lo, Y., Chang, J., Ren, N. 2014. Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochemical Engineering Journal, 9, 220-230.
  • [59] Figueroa-torres, G. M., Asyraf, W. M., Mahmood, W., Pittman, J. K., Theodoropoulos, C. 2020. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochemical Engineering Journal, 153, 107396.
  • [60] Cheng, H., Whang, L., Chan, K., Chung, M., Wu, S. 2015. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 184, 379-385.

Sentetik Atıksu İçerisindeki Borodinellopsis texensis CCALA 892’den Biyokütle ve Biyo-bütanol Üretimi: Biyokimyasal Kompozisyonun Belirlenmesi

Year 2020, Volume: 24 Issue: 2, 306 - 316, 26.08.2020
https://doi.org/10.19113/sdufenbed.573432

Abstract

Mikroalgler genelde biyokütlenin yüksek miktarlarını üretebilirler ve biyokütleden biyo-bütanole dönüştürülebilirler. Biyo-bütanol sıvı bir yakıttır ve önemli fiziksel ve kimyasal özelliklere sahiptir. Bu çalışmada, belediye atık suyunun çeşitli konsantrasyonunda büyütülen Borodinellopsis texensis CCALA 892’den biyo-bütanol üretimini inceledik. Birde, mikroalg örneklerinin biyokimyasal içeriğinin oranlarını belirleyerek katalaz, süperoksit dismutaz ve askorbat peroksidaz gibi bazı antioksidan enzimleri çalıştık. Yaygın çalışmada, biyo-bütanol aseton-bütanol-etanol (ABE) fermantasyon metodu ile üretildi. Beş atık su örneği içerisinde %25 atıksu içerisinde büyütülen mikroalg örneği 0,114 ± 0,002 g L-1g-1 ile en yüksek biyokütle verimine sahipti. Kontrol grubunun karbonhidrat ve protein konsantrasyonları gün ve gün arttı ve değerleri yedi günde durağan faza ulaştı. Durağan fazda, %25 atık su içerisinde büyütülen mikroalg örneği 0,30 g L-1 ile en yüksek karbonhidrat konsantrasyonu ve 0,35 g L-1 ile de en yüksek protein konsantrasyonuna sahipti. %25 atık su içerisindeki mikroalg örneğinde katalaz, superoksit dismutaz ve askorbat peroksidaz’ın maksimum enzim aktiviteleri sırası ile 15,33 ± 0,88, 8,67 ± 0,67 and 33 ± 1,53 µmole/mg idi. Buna ek olarak, B. texensis CCALA 892’nin biyo-bütanol içeriği 3,63 ± 0,21 g L-1 ve biyo-bütanol verimi 0,18 ± 0,011 g/g şeker olarak bulundu. Bir sonraki çalışmada, geniş yelpazede bütanol üretimini inceleyebiliriz.

References

  • [1] Harun, R., Danquah, M. K., Forde, G. M. 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85(2), 199-203.
  • [2] Sivakumar, G., Vail, D.R., Xu, J., Burner, D.M., Jr, J.O.L., Ge, X., Weathers, P.J. 2010. Bioethanol and biodiesel: Alternative liquid fuels for future generations. Engineering in Life Science, 10(1), 8-18.
  • [3] Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A. 2010. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Management, 30, 1860-1870.
  • [4] Keasling, J. D., Chou, H. 2008. Metabolic engineering delivers next-generation biofuels. Nature Biotechnology, 26(3), 298-299.
  • [5] Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C., Li, B. 2020. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, 122804.
  • [6] Kumar, M., Enamala, S., Chavali, M., Donepudi, J. 2018. Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable Sustainable Energy Reviews, 94, 49-68.
  • [7] Fan, H., Wang, K., Wang, C., Yu, F., He, X. 2020. A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environmental Technology & Innovation, 19, 100849.
  • [8] Bakonyi, P., Kumar, G., Béla, K., Kim, S., Koter, S., Kujawski, W., Nemestóthy, N., Peter, J., Pientka, Z. 2018. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen. Bioresource Technology, 270, 643-655.
  • [9] Zhuang, L., Li, M., Hao, H. 2020. Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource Technology, 308, 123320.
  • [10] Ometto, F., Quiroga, G., Pavel, P., Jefferson, B., Villa, R. 2014. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350-361.
  • [11] Lerc, Z., Nadiah, W., Kadir, A., Kee, M., Uemura, Y., Suparmaniam, U., Wei, J., Loke, P. 2020. The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renewable Energy, 154, 1083-1091.
  • [12] Minhas, A. K., Hodgson, P., Barrow, C. J., Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Frontiers in Microbiology, 7, 546.
  • [13] Park, S., Ha, T., Nguyen, T., Jin, E. 2019. Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. Bioresource Technology, 292, 121953.
  • [14] Shahkolaie, S. S., Baranimotlagh, M., Dordipour, E., Khormali, F. 2020. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany, 128, 132-140.
  • [15] Yu, Y., Zhou, W., Liang, X., Zhou, K., Lin, X. 2019. Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance. Environmental Pollution, 252, 941-949.
  • [16] Abeyrathne, E. D. N. S., Huang, X., Ahn, D. U. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides-A review. Poultry Science, 97, 1462-1468.
  • [17] Meyer, A. S., Isaksen, A. 1995. Application of enzymes as food antioxidants. Trends in Food Science & Technology, 6, 300-304.
  • [18] Ntagkas, N., Woltering, E. J., Marcelis, L. F. M. 2018. Light regulates ascorbate in plants: An integrated view on physiology and biochemistry. Environmental and Experimental Botany, 147, 271-280.
  • [19] Van Doorn, W.G., Ketsa, S. 2014. Postharvest biology and technology cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase. Postharvest Biology and Technology, 95, 64-69.
  • [20] Guiry, M. D. in Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (Access Date: 05. 05.2020).
  • [21] Andersen, R. A. 2005. Algal Culturing Techniques. 1st Edition. Elsevier Academic press, USA, 429s.
  • [22] OECD, 2010. OECD Guidelines for the Testing of Chemicals (Technical Report 209). Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation). Guideline 16. https://www.oecdilibrary.org/content/publication/9789264070080-en (Access Date: 05.05.2020).
  • [23] Zouboulis, A. I., Gkotsis, P. K., Zamboulis, D. X., Mitrakas, M. G. 2017. Application of powdered activated carbon (PAC) for membrane fouling control in a pilot-scale MBR system. Water Science and Technology, 75(10), 2350-2357.
  • [24] Onay, M. 2018. Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor. Fuel, 239, 1315-1323.
  • [25] Onay, M. 2018. Bioethanol production from Nannochloropsis gaditana in municipal wastewater. Energy Procedia, 153, 253-257.
  • [26] Weis, V. M., Verde, E. A., Reynolds, W. S. 2002. Characterization of a Short Form Perdinin Chlorophyll Protein (PCP) cDNA and Protein from the Symbiotic Dinoflagellate Symbiodinium muscatinei (Dinophyceae) from the Sea Anemone Anthopleura elegantissima. Journal of Phycology, 38, 157-163.
  • [27] Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Analitical Biochemistry, 72, 248-254.
  • [28] Zhao, G., Chen, X., Wang, L., Zhou, S., Feng, H., Chen, W.N., Lau, R. 2013. Ultrasound Assisted Extraction of Carbohydrates from Microalgae as Feedstock for Yeast Fermentation. Bioresource Technology, 128, 337-344.
  • [29] Goth, L. 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143-151.
  • [30] Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 44, 276-287.
  • [31] Onay, M. 2020. The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel, 273, 117795.
  • [32] Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiology, 22, 867-880.
  • [33] Maiti, S., Sarma, S. J., Brar, S. K., Le Bihan, Y., Drogui, P., Buelna, G., Verma, M., Soccol, C. R. 2015. Novel spectrophotometric method for detection and estimation of butanol in acetone-butanol-ethanol Fermenter. Talanta, 141, 116-121.
  • [34] Onay, M. 2018. Investigation of biobutanol efficiency of Chlorella sp. cultivated in municipal wastewater. Journal of Geoscience and Environment Protection, 06, 40-50.
  • [35] Neofotis, P., Huang, A., Sury, K., Chang, W., Joseph, F., Gabr, A., Twary, S., Qiu, W., Holguin, O., Polle, J. E. W. 2016. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15, 164-178.
  • [36] Gazioğlu, S. N. 2020. Mikroalglerden biyokütle üretimi için 1’lik kabarcıklı kolon fotobiyoreaktörün tasarımı. Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, 63s, Van.
  • [37] Chiu, S. Y., Kao, C., Chen, T., Chang, Y., Kuo, C., Lin, C. 2015. Cultivation of microalgal chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189.
  • [38] Martin, C., De la Noüe, J., Picard, G. 1985. Intensive Culture of Freshwater Microalgae on Aerated Pig Manure. Biomass, 7, 245-259.
  • [39] Cai, T., Park, S. Y., Li, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.
  • [40] Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.K., Lee, T. 2013. Microalgae Cultivation for Bioenergy Production Using Wastewaters from a Municipal WWTP as Nutritional Sources. Bioresource Technology, 131, 515-520.
  • [41] De la Noüe, J., Laliberté, G., Proulx, D. 1992. Algae and waste water. Journal of Applied Phycology, 4, 247-254.
  • [42] Green, F. B., Lundquist, T., Oswald, W. 1995. Energetics of advanced integrated wastewater pond systems. Water Science & Technology, 31, 9-20.
  • [43] De-Bashan, L. E., Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101, 1611-1627.
  • [44] Hoffmann, J. P. 1998. Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757-763.
  • [45] Mallick, N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 15, 377-90.
  • [46] Salama, E. S., Kurade, M. B., Abou-Shanab, R. A., El-Dalatony, M. M., Yang, I. S., Min, B. 2017. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew able Sustainable Energy Review, 79, 1189-1211.
  • [47] Aketo, T., Hoshikawa, Y., Nojima, D., Yabu, Y., Maeda, Y., Yoshino, T., Takano, H., Tanaka, T. 2020. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Journal of Bioscience and Bioengineering, 129, 565-572.
  • [48] Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., Zhong, Y. 2020. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804.
  • [49] Leite, L. D. S., Teresa, M., Daniel, L. A. 2019. Microalgae cultivation for municipal and piggery wastewater treatment in Brazil. Journal of Water Process Engineering, 31, 1-7.
  • [50] Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W., Chang, J. S. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10.
  • [51] Wang, J., Yin, Y. 2018. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microbial Cell Factories, 17(1), 22-37.
  • [52] Ferreira, A., Marques, P., Ribeiro, B., Assemany, P., de Mendonça, H. V., Barata, A., Oliveira, A. C., Reis, A., Pinheiro, H. M., Gouveia, L. 2018. Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environmental Research, 164, 32-38.
  • [53] Dasgupta, C. N., Suseela, M., Mandotra, S., Kumar, P., Pandey, M. K., Toppo, K. 2015. Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Applied Energy, 146, 202-208.
  • [54] Cheng, D.L., Ngo, H. H., Guo, W.S. 2019. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresource Technology, 275, 109-122.
  • [55] Yang, W., Gao, X., Wu, Y., Wan, L., Tan, L., Yuan, S. 2020. Ecotoxicology and Environmental Safety The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, 110484.
  • [56] Zhu, Z., Wang, Suchun, Zhao, F., Wang, Shu-guang, Liu, F., Liu, G. 2019. Joint toxicity of microplastics with triclosan to marine microalgae. Environmental Pollution, 246, 509-517.
  • [57] Yun, C., Hwang, K., Han, S., Ri, H. 2019. The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass and Bioenergy, 127, 105277.
  • [58] Wang, Y., Guo, W., Lo, Y., Chang, J., Ren, N. 2014. Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochemical Engineering Journal, 9, 220-230.
  • [59] Figueroa-torres, G. M., Asyraf, W. M., Mahmood, W., Pittman, J. K., Theodoropoulos, C. 2020. Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochemical Engineering Journal, 153, 107396.
  • [60] Cheng, H., Whang, L., Chan, K., Chung, M., Wu, S. 2015. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 184, 379-385.
There are 60 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melih Onay 0000-0002-9378-0856

Publication Date August 26, 2020
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Onay, M. (2020). Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 306-316. https://doi.org/10.19113/sdufenbed.573432
AMA Onay M. Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. J. Nat. Appl. Sci. August 2020;24(2):306-316. doi:10.19113/sdufenbed.573432
Chicago Onay, Melih. “Biomass and Bio-Butanol Production from Borodinellopsis Texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 2 (August 2020): 306-16. https://doi.org/10.19113/sdufenbed.573432.
EndNote Onay M (August 1, 2020) Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 306–316.
IEEE M. Onay, “Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition”, J. Nat. Appl. Sci., vol. 24, no. 2, pp. 306–316, 2020, doi: 10.19113/sdufenbed.573432.
ISNAD Onay, Melih. “Biomass and Bio-Butanol Production from Borodinellopsis Texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (August 2020), 306-316. https://doi.org/10.19113/sdufenbed.573432.
JAMA Onay M. Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. J. Nat. Appl. Sci. 2020;24:306–316.
MLA Onay, Melih. “Biomass and Bio-Butanol Production from Borodinellopsis Texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 2, 2020, pp. 306-1, doi:10.19113/sdufenbed.573432.
Vancouver Onay M. Biomass and Bio-butanol Production from Borodinellopsis texensis CCALA 892 in Synthetic Wastewater: Determination of Biochemical Composition. J. Nat. Appl. Sci. 2020;24(2):306-1.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.