Research Article
BibTex RIS Cite

Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing

Year 2020, Volume: 24 Issue: 2, 340 - 361, 26.08.2020
https://doi.org/10.19113/sdufenbed.632535

Abstract

Clayey soils might be investigated since the days of the beginning of the geotechnical science. The behaviour of the clays under different loading and environmental conditions is still under investigation. This study is dealing with the pre-failed soil slopes consist of high and low plastic overconsolidated clays. After failure of a slope, the thought of “soil strength reduces its residual strength” has found general acceptance and residual strength is applied to the calculations of the stability of pre-failed slopes. At this point, the question comes to the minds; if the slope formed with clayey soil or more specifically, high or low plastic overconsolidated clays, what would be the difference in shear behaviour after failure? That is the main point of this study. In the tests, Kaolin clay is used for low plastic samples and 50% Kaolin + 50% Bentonite in weight are used for high plastic clay samples. As testing steps; first, samples are over-consolidated, then sheared until their residual strengths and finally tested after a certain time at the highest rate of shearing of the apparatus. At the end of the 30 (thirty) tests, the results are obtained as expected. High plastic samples could serve lower strength values under the same normal stress; however, the interesting result was about the difference in values between the residual strength and the shear strength at a higher rate of shearing.

References

  • [1] Wentworth, C. K., 1922. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol., Vol. 30, pp. 377-392.
  • [2] Taylor, D. W., 1948. Fundamentals of Soil Mechanics. John Wiley and Sons Inc., London, pp. 362-381.
  • [3] Bromhead, E. N., 1992. The Stability of Slopes. Blackie Academic & Professional, Glassgow, Chapman & Hall, New York, pp. 414.
  • [4] Skempton, A.W., 1964. Long-term Stability of Clay Slopes. Geotechnique, Vol. 14, pp. 75-102.
  • [5] Gregory, C.H. and Delabeche, H., 1844. On railway cuttings and embankments; with an account of some slips in the London clay, on the line of the London and Croydon Railway. Min. Proc. Inst. C.E.,Vol. 3, pp. 135-145.
  • [6] Skempton, A.W., and Golder, H. Q., 1948. Practical Examples of the  = 0 Analysis of the Stability of Clays. Proceedings of the Second International Conference of Soil Mechanics, Rotterdam, Vol. 2, pp. 63-70.
  • [7] Terzaghi, K., 1936. Stability of Slopes in Natural Clay. Proceedings of the First International Conference of Soil Mechanics, Harvard, Vol. 1, pp. 161-165.
  • [8] Terzaghi, K., and Peck, Ralph B., 1948. Soil Mechanics in Engineering Practice. John Wiley and Sons, New York, pp. 566.
  • [9] Hutchinson, J. N. and Bhardari, R. K., 1971. Undrained Loading; a Fundamental Mechanism of Mudflows and other Mass Movements. Geotechnique, Vol. 21, pp. 353-358.
  • [10] Stark, T. D., and Eid, H. T., 1997. Slope Stability Analyses in Stiff Fissured Clays. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 4, pp.335-343.
  • [11] Chandler, R. J. and Skempton, A. W., 1974. The Design of Permanent Cutting Slopes in Fissured Clays. Geotechnique, Vol. 24, No. 4, pp. 457-466.
  • [12] Imperial College, University of London. A. W. Skempton. Slope Stability of Cuttings in Brown LondonClay. https://www.issmge.org/uploads/publications/1/36/1977_03_0003.pdf. (Access Date: 14.04.2020)
  • [13] Kuwano, J., Ishihara, K., Kuwano, R., and Yoshimine, M., 1991. Dynamic Strength of Cohesive Soils from Landslide Sites. Proceedings of the First Young Asian Geotechnical Engineers Conference, pp. 207-216.
  • [14] Lupini, J. F., Skinner, A. E., and Vaughan, P. R., 1981. The Drained Residual Strength of Cohesive Soils. Geotechnique, Vol. 31, No. 2, pp. 181 – 213.
  • [15] Martins, J. P., 1983. Shaft resistance of axially loaded piles in clay. Ph.D. Thesis, University of London, pp. 63.
  • [16] Lemos, L. J., 1986. The Effects of Rate on the Residual Strength of Soil. Ph.D. Thesis, University of London, pp. 83.
  • [17] Tika, T. E., 1989. The Effect of Rate of Shear on the Residual Strength of Soil. Ph. D. Thesis, University of London, pp. 494.
  • [18] Lemos, L. J. L., Skempton, A. W., and Vaughan, P. R., 1985. Earthquake loading of shear surfaces in slopes. Proc. XI. Int. Conf Soil Mech. & Foundn. Engng., San Francisco.Vol. 4, pp. 1955-1958.
  • [19] Tika, T. E., Vaughan, P. R., and Lemos, L. J., 1996. Fast Shearing of Pre-existing Zones in Soils. Geotechnique, Vol. 46, No. 2, pp. 197 – 233.
  • [20] Skempton, A.W., 1970. First time slides in overconsolidated clays. Geotechnique,Vol. 20, No. 3, pp. 320-324.
  • [21] Morgenstern, N. R., Blight, G. R., Janbu, N., and Resendiz, D., 1977. Slopes and Excavations. Proceedings of the Ninth International Conference of Soil Mechanics and Foundation Engineering, Vol. 12, pp. 547-604.
  • [22] Hvorslev, M. J., 1937. Über die Festigkeitseigenschaften gestörter bindiger Böden. Ingenior Skriftor A., No. 45 Copenhagen, pp. 159.
  • [23] Tiedemann, B., 1937. Über die Schubfestigkeit bindiger Böden. Bautechnik, Vol. 15., pp. 400-403, 433-435.
  • [24] Skempton, A. W. and Petley, D. J., 1967. The strength along structural discontinuities in stiff clays. Proc. Geotechnical Conference, Oslo, Vol. 2, pp. 29-46.
  • [25] Ramiah, B. K. and Purushothama Raj. P., 1971. Influence of strain rate on the residual strength of a kaolinitic clay. Proc. Geotechnical Engineering, J.S.E.A.S.S.E., Vol. 2, pp. 151-158.
  • [26] Skempton, A.W., 1985. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique, Vol. 35, No.1, pp. 3-18.
  • [27] Yatabe, R., N. Yagi, and Enoki, M., 1991. Ring shear characteristics of clays in fracturedzone- landslide. Journal of Geotechnical Engineering, Japan Society of Civil Engineers, No.436/III-16, pp. 93-101.
  • [28] Suzuki, M., Umezaki, T., Kawakami, H., and Yamamoto, T., 2000. Residual strength of soil by direct shear test. Journal of Geotechnical Engineering, Japan Society of Civil Engineers, No.645/III-50, pp.37-50.
  • [29] Van Olphen, H., 1963. An Introduction to Clay Colloid Chemistry. Interscience Publication, New York, pp. 301.

Önceden Kaymış Aşırı Konsolide Killi Şevlerin Kesme Mukavemetinin Hızlı Kesme Yöntemi ile Araştırılması

Year 2020, Volume: 24 Issue: 2, 340 - 361, 26.08.2020
https://doi.org/10.19113/sdufenbed.632535

Abstract

Killi zeminler geoteknik biliminin başlangıcından beri incelenmekte olabilir, ancak kilin farklı yükleme durumlarında ve farklı şartlardaki davranışı halen incelenmektedir. Bu çalışma, yüksek ya da düşük plastitedeki killerden oluşmuş önceden kaymış şevlerle ilgilidir. Kaymadan sonra, “zeminin gücü reziduel değere düşer” düşüncesi genel anlamda kabul görmüş ve önceden kaymış şevlerin kararlılık hesaplarında bu değer kullanılmıştır. Bu noktada, eğer şev kilden oluşuyorsa sorusu akıllara gelebilir; daha detaylı düşünürsek, eğer şev yüksek ya da düşük plastisiteli aşırı konsolide killerden oluşuyorsa kesme davranışında ne gibi farklılıklar olabilir? İşte bu çalışmanın ana noktası budur. Deneylerde, düşük plastisiteli örnekler için Kaolin, yüksek plastisiteli örnekler icin ise ağırlıkça %50 Kaolin ve %50 Bentonit karışımı kullanılmıştır. Deney aşamaları olarak, önce örnekler aşırı konsolide edilir, daha sonra reziduel değerlerine kadar kesme deneyi sürdürülür ve son olarak da hızlı kesme deneyi gerçekleştirilir. 30 (otuz) testin sonunda sonuçlar beklendiği gibi elde edilir. Yüksek plastik numuneler aynı normal stres altında daha düşük mukavemet değerleri vermektedir; asıl ilginç sonuç, reziduel mukavemet ile daha yüksek bir kesme hızındaki kesme mukavemeti arasındaki değerler arasındaki farktır.

References

  • [1] Wentworth, C. K., 1922. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol., Vol. 30, pp. 377-392.
  • [2] Taylor, D. W., 1948. Fundamentals of Soil Mechanics. John Wiley and Sons Inc., London, pp. 362-381.
  • [3] Bromhead, E. N., 1992. The Stability of Slopes. Blackie Academic & Professional, Glassgow, Chapman & Hall, New York, pp. 414.
  • [4] Skempton, A.W., 1964. Long-term Stability of Clay Slopes. Geotechnique, Vol. 14, pp. 75-102.
  • [5] Gregory, C.H. and Delabeche, H., 1844. On railway cuttings and embankments; with an account of some slips in the London clay, on the line of the London and Croydon Railway. Min. Proc. Inst. C.E.,Vol. 3, pp. 135-145.
  • [6] Skempton, A.W., and Golder, H. Q., 1948. Practical Examples of the  = 0 Analysis of the Stability of Clays. Proceedings of the Second International Conference of Soil Mechanics, Rotterdam, Vol. 2, pp. 63-70.
  • [7] Terzaghi, K., 1936. Stability of Slopes in Natural Clay. Proceedings of the First International Conference of Soil Mechanics, Harvard, Vol. 1, pp. 161-165.
  • [8] Terzaghi, K., and Peck, Ralph B., 1948. Soil Mechanics in Engineering Practice. John Wiley and Sons, New York, pp. 566.
  • [9] Hutchinson, J. N. and Bhardari, R. K., 1971. Undrained Loading; a Fundamental Mechanism of Mudflows and other Mass Movements. Geotechnique, Vol. 21, pp. 353-358.
  • [10] Stark, T. D., and Eid, H. T., 1997. Slope Stability Analyses in Stiff Fissured Clays. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 4, pp.335-343.
  • [11] Chandler, R. J. and Skempton, A. W., 1974. The Design of Permanent Cutting Slopes in Fissured Clays. Geotechnique, Vol. 24, No. 4, pp. 457-466.
  • [12] Imperial College, University of London. A. W. Skempton. Slope Stability of Cuttings in Brown LondonClay. https://www.issmge.org/uploads/publications/1/36/1977_03_0003.pdf. (Access Date: 14.04.2020)
  • [13] Kuwano, J., Ishihara, K., Kuwano, R., and Yoshimine, M., 1991. Dynamic Strength of Cohesive Soils from Landslide Sites. Proceedings of the First Young Asian Geotechnical Engineers Conference, pp. 207-216.
  • [14] Lupini, J. F., Skinner, A. E., and Vaughan, P. R., 1981. The Drained Residual Strength of Cohesive Soils. Geotechnique, Vol. 31, No. 2, pp. 181 – 213.
  • [15] Martins, J. P., 1983. Shaft resistance of axially loaded piles in clay. Ph.D. Thesis, University of London, pp. 63.
  • [16] Lemos, L. J., 1986. The Effects of Rate on the Residual Strength of Soil. Ph.D. Thesis, University of London, pp. 83.
  • [17] Tika, T. E., 1989. The Effect of Rate of Shear on the Residual Strength of Soil. Ph. D. Thesis, University of London, pp. 494.
  • [18] Lemos, L. J. L., Skempton, A. W., and Vaughan, P. R., 1985. Earthquake loading of shear surfaces in slopes. Proc. XI. Int. Conf Soil Mech. & Foundn. Engng., San Francisco.Vol. 4, pp. 1955-1958.
  • [19] Tika, T. E., Vaughan, P. R., and Lemos, L. J., 1996. Fast Shearing of Pre-existing Zones in Soils. Geotechnique, Vol. 46, No. 2, pp. 197 – 233.
  • [20] Skempton, A.W., 1970. First time slides in overconsolidated clays. Geotechnique,Vol. 20, No. 3, pp. 320-324.
  • [21] Morgenstern, N. R., Blight, G. R., Janbu, N., and Resendiz, D., 1977. Slopes and Excavations. Proceedings of the Ninth International Conference of Soil Mechanics and Foundation Engineering, Vol. 12, pp. 547-604.
  • [22] Hvorslev, M. J., 1937. Über die Festigkeitseigenschaften gestörter bindiger Böden. Ingenior Skriftor A., No. 45 Copenhagen, pp. 159.
  • [23] Tiedemann, B., 1937. Über die Schubfestigkeit bindiger Böden. Bautechnik, Vol. 15., pp. 400-403, 433-435.
  • [24] Skempton, A. W. and Petley, D. J., 1967. The strength along structural discontinuities in stiff clays. Proc. Geotechnical Conference, Oslo, Vol. 2, pp. 29-46.
  • [25] Ramiah, B. K. and Purushothama Raj. P., 1971. Influence of strain rate on the residual strength of a kaolinitic clay. Proc. Geotechnical Engineering, J.S.E.A.S.S.E., Vol. 2, pp. 151-158.
  • [26] Skempton, A.W., 1985. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique, Vol. 35, No.1, pp. 3-18.
  • [27] Yatabe, R., N. Yagi, and Enoki, M., 1991. Ring shear characteristics of clays in fracturedzone- landslide. Journal of Geotechnical Engineering, Japan Society of Civil Engineers, No.436/III-16, pp. 93-101.
  • [28] Suzuki, M., Umezaki, T., Kawakami, H., and Yamamoto, T., 2000. Residual strength of soil by direct shear test. Journal of Geotechnical Engineering, Japan Society of Civil Engineers, No.645/III-50, pp.37-50.
  • [29] Van Olphen, H., 1963. An Introduction to Clay Colloid Chemistry. Interscience Publication, New York, pp. 301.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gültekin Kırım 0000-0003-2955-5141

Alper Cebeci 0000-0001-9082-8263

Publication Date August 26, 2020
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Kırım, G., & Cebeci, A. (2020). Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 340-361. https://doi.org/10.19113/sdufenbed.632535
AMA Kırım G, Cebeci A. Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing. SDÜ Fen Bil Enst Der. August 2020;24(2):340-361. doi:10.19113/sdufenbed.632535
Chicago Kırım, Gültekin, and Alper Cebeci. “Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 2 (August 2020): 340-61. https://doi.org/10.19113/sdufenbed.632535.
EndNote Kırım G, Cebeci A (August 1, 2020) Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 2 340–361.
IEEE G. Kırım and A. Cebeci, “Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing”, SDÜ Fen Bil Enst Der, vol. 24, no. 2, pp. 340–361, 2020, doi: 10.19113/sdufenbed.632535.
ISNAD Kırım, Gültekin - Cebeci, Alper. “Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/2 (August 2020), 340-361. https://doi.org/10.19113/sdufenbed.632535.
JAMA Kırım G, Cebeci A. Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing. SDÜ Fen Bil Enst Der. 2020;24:340–361.
MLA Kırım, Gültekin and Alper Cebeci. “Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 2, 2020, pp. 340-61, doi:10.19113/sdufenbed.632535.
Vancouver Kırım G, Cebeci A. Investigation of Shear Strength of Prefailed Overconsolidated Clayey Slopes by Fast Shearing. SDÜ Fen Bil Enst Der. 2020;24(2):340-61.

e-ISSN: 1308-6529