Research Article
BibTex RIS Cite

Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları

Year 2020, Volume: 24 Issue: 3, 689 - 695, 25.12.2020
https://doi.org/10.19113/sdufenbed.543986

Abstract

Güç elektroniği devreleri günümüzde yenilenebilir enerji uygulamaları ve enerji depolamak için kaçınılmaz aygıtlardır. Bu güç elektroniği devrelerinin ana elemanlarından biride endüktanstır. Endüktans bir canlının kalbi gibi çalışır, enerjiyi depolar ve çeviriciler de enerjiyi kaynaktan yüke doğru pompalar ve bu sayede yük devresine sürekli akım akışını sağlar. Bu yüzden iyi tasarlanmış bir endüktans çeviriciyi sürekli modda çalıştırmak için oldukça önemlidir ve böylece akım akışı kesintisiz olur. Bu çalışmada çeviriciyi sürekli modda çalıştırmak için gerekli bobin seçim kriteri literatürde incelenmiş ve sınır değer koşulu için kullanılan denklemler yardımıyla bulunmuştur. Yine gerekli denklemleri içeren tasarım aşamaları bir örnek uygulama ile gösterilmiştir. Çekirdek ve kabloların endüktans verimi üzerindeki etkisi de bu çalışmada incelenmiştir. Ferit çekirdek ve Litz teli kullanılan bir endüktans önerilmiş ve bir çevirici devresi için deneysel olarak tasarlanmıştır. Endüktans değerinin belirlenmesi için ölçümler gösterilmiştir. Ayrıca endüktans akım değişimleri yüksek frekanslar için araştırılmış, çeviricide kullanımı gösterilmiştir.

References

  • [1] Mohan, N., Undeland, T. M., Robbins, W. P. 1995. Power Electronics. John Wiley, USA, 832p.
  • [2] Khalig, A. Nie, Z. Emadi, A. 2009. Integrated Power Electronic Converters and Digital Control. CRC Press, Boca Raton, 350p.
  • [3] Shaiu, J. K., Cheng, C. J. 2010. Design of a non-inverting synchronous buck-boost DC/DC power converter with moderate power level. Robotics, and Computer-Integrated Manufacturing, 26(3), 263-267.
  • [4] You, B. G., Kim, J. S., Lee, B. K., Choi, G. B., Yoo, D. W. 2011. Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles. Journal of Electrical Engineering & Technology, 6(4), 527-534.
  • [5] Rylko, M. S., Lyons, B. J., Hayes, J. G., Egan, M. G. 2011. Revised Magnetics Performance Factors and Experimental Comparison of High-Flux Material for High-Current DC-DC Inductors. IEEE Transactions on Power Electronics, 26(8), 2112-2126.
  • [6] Fair-Rite Products Corp. 2005. The Effect of Direct Current on the Inductance of a Ferrite Core, Technical Information, 14th Edition, pp:165-169.
  • [7] Anonim. 2006, Magnetics Corperation, General Core Selection Data Sheet, Section 4, USA.
  • [8] Mcylayman, C. W. T. 2016. Transformer and inductor design handbook. CRC Press, California, 667p.
  • [9] Aucejo, B., M., Deü, J., Multon, F. B. 2017. Lossouarn Design of inductors with high inductance values for resonant piezoelectric dampin. Sensors, and Actuators A: Physical, 259, 68-76.
  • [10] Anonim. 2019, Coilcraft Inc, Power Inductor Finder.https://www.coilcraft.com/apps/powgr_tools/power/. (Erişim Tarihi: 01.03.2020).
  • [11] Grandi, G., Kazimierczuk, M. K., Massarini, A., Reggiani, U., Sancineto, G. 2004. Model of laminated iron-core inductors for high frequencies. IEEE Transactions on Magnetics, 40(4), 1839-1845.
  • [12] Williams, A., 2011. Fundamentals of Magnetics Design: Inductors and Transformers, Lecturer Notes.
  • [13] Sahin, M. E. 2014. Design and Control of Parallel Connected Buck-Boost Converter for Hybrid Energy System. Ph.D. Dissertation, Karadeniz Technical University, 202p, Trabzon.
  • [14] Gary, L. J. 2001. Inductors and Transformers. Solid State Tesla Coil, Chapter 4.
  • [15] Orenchak, G. 1999. Boost Material Improves Inductor Characteristics under DC Bias Conditions, PCIM Article, 1, 1-3.
  • [16] Sonntag, C. L. W., Lomonova, E. A., Duarte, J. L. 2008. Implementation of the Neumann formula for calculating the mutual inductance between planar PCB inductors. In Electrical Machines, 18th International Conference on IEEE, 6-9 September, Vilamoura, Portugal, 1-6.
  • [17] Macrelli, E., Romani, A., Wang, N., Roy, S., Hayes, M., Paganelli, R. P., Tartagni, M. 2014. Modeling, design, and fabrication of high-inductance bond wire micro transformers with a toroidal ferrite core. IEEE Transactions on Power Electronics, 30(10), 5724-5737.
  • [18] Gala, K., Zolotov, V., Panda, R., Young, B., Wang, J., Blaauw, D., 2000, On-chip inductance modeling and analysis. In Proceedings of the 37th Annual Design Automation Conference, 5-9 June, USA, 63-68.
  • [19] Anonim. 2005. Magnetics Kool, Mμ E-Cores, Technical Bulletin, Bulletin No: KMC-E1, Magnetics.
  • [20] Şahin, M. E. Okumus, H. I. 2019. Inductance Selection Criteria and Design Steps for Power Electronics Applications. 16TH International Conference of Young Scientists on Energy Issues (CYSENI), 23-24 May, Kaunas, Lithuania.
  • [21] Ben-Yaakov, S., 2019, Magnetic design, Switch mode DC-DC converters, Part 3, Lecturer slides, http://www.ee.bgu.ac.il/~dcdc/slides/index.html. (Erişim Tarihi: 01.03.2020).
  • [22] Saeed, R., 2018, Design and characterisation of a high energy-density inductor. Ph.D. Thesis, University of Nottingham, England.

Inductance Selection Criteria and Design Steps for Power Electronics Applications

Year 2020, Volume: 24 Issue: 3, 689 - 695, 25.12.2020
https://doi.org/10.19113/sdufenbed.543986

Abstract

The power electronics circuits are indispensable devices today for renewable energy applications and for storing energy. One of the main components of this power electronic circuits is the inductance. The inductance working as a live heart, store the energy and pumps the energy from the source to the load in converters, and supply continuously the current of the circuit to the load. The energy efficiency in the system depends on the inductance efficiency. So, a well-designed inductance is very important in order to operate the converter in continuous mode so the current flow is uninterruptible. In this paper, inductance selection criteria for the converters are investigated to work the converter in continuous mode from the literature and solved for the limit value condition equation. Also, the design steps of an inductance including necessary calculations are shown with an example application. The cores and wires effect to the inductance efficiency is also investigated in this paper. An inductance using Ferrite core and Litz wire is proposed and designed experimentally for a converter circuit. Measurements to determine the inductance value was shown. Also, the inductance current variations for higher frequencies are investigated, and used in the converter is shown.

References

  • [1] Mohan, N., Undeland, T. M., Robbins, W. P. 1995. Power Electronics. John Wiley, USA, 832p.
  • [2] Khalig, A. Nie, Z. Emadi, A. 2009. Integrated Power Electronic Converters and Digital Control. CRC Press, Boca Raton, 350p.
  • [3] Shaiu, J. K., Cheng, C. J. 2010. Design of a non-inverting synchronous buck-boost DC/DC power converter with moderate power level. Robotics, and Computer-Integrated Manufacturing, 26(3), 263-267.
  • [4] You, B. G., Kim, J. S., Lee, B. K., Choi, G. B., Yoo, D. W. 2011. Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles. Journal of Electrical Engineering & Technology, 6(4), 527-534.
  • [5] Rylko, M. S., Lyons, B. J., Hayes, J. G., Egan, M. G. 2011. Revised Magnetics Performance Factors and Experimental Comparison of High-Flux Material for High-Current DC-DC Inductors. IEEE Transactions on Power Electronics, 26(8), 2112-2126.
  • [6] Fair-Rite Products Corp. 2005. The Effect of Direct Current on the Inductance of a Ferrite Core, Technical Information, 14th Edition, pp:165-169.
  • [7] Anonim. 2006, Magnetics Corperation, General Core Selection Data Sheet, Section 4, USA.
  • [8] Mcylayman, C. W. T. 2016. Transformer and inductor design handbook. CRC Press, California, 667p.
  • [9] Aucejo, B., M., Deü, J., Multon, F. B. 2017. Lossouarn Design of inductors with high inductance values for resonant piezoelectric dampin. Sensors, and Actuators A: Physical, 259, 68-76.
  • [10] Anonim. 2019, Coilcraft Inc, Power Inductor Finder.https://www.coilcraft.com/apps/powgr_tools/power/. (Erişim Tarihi: 01.03.2020).
  • [11] Grandi, G., Kazimierczuk, M. K., Massarini, A., Reggiani, U., Sancineto, G. 2004. Model of laminated iron-core inductors for high frequencies. IEEE Transactions on Magnetics, 40(4), 1839-1845.
  • [12] Williams, A., 2011. Fundamentals of Magnetics Design: Inductors and Transformers, Lecturer Notes.
  • [13] Sahin, M. E. 2014. Design and Control of Parallel Connected Buck-Boost Converter for Hybrid Energy System. Ph.D. Dissertation, Karadeniz Technical University, 202p, Trabzon.
  • [14] Gary, L. J. 2001. Inductors and Transformers. Solid State Tesla Coil, Chapter 4.
  • [15] Orenchak, G. 1999. Boost Material Improves Inductor Characteristics under DC Bias Conditions, PCIM Article, 1, 1-3.
  • [16] Sonntag, C. L. W., Lomonova, E. A., Duarte, J. L. 2008. Implementation of the Neumann formula for calculating the mutual inductance between planar PCB inductors. In Electrical Machines, 18th International Conference on IEEE, 6-9 September, Vilamoura, Portugal, 1-6.
  • [17] Macrelli, E., Romani, A., Wang, N., Roy, S., Hayes, M., Paganelli, R. P., Tartagni, M. 2014. Modeling, design, and fabrication of high-inductance bond wire micro transformers with a toroidal ferrite core. IEEE Transactions on Power Electronics, 30(10), 5724-5737.
  • [18] Gala, K., Zolotov, V., Panda, R., Young, B., Wang, J., Blaauw, D., 2000, On-chip inductance modeling and analysis. In Proceedings of the 37th Annual Design Automation Conference, 5-9 June, USA, 63-68.
  • [19] Anonim. 2005. Magnetics Kool, Mμ E-Cores, Technical Bulletin, Bulletin No: KMC-E1, Magnetics.
  • [20] Şahin, M. E. Okumus, H. I. 2019. Inductance Selection Criteria and Design Steps for Power Electronics Applications. 16TH International Conference of Young Scientists on Energy Issues (CYSENI), 23-24 May, Kaunas, Lithuania.
  • [21] Ben-Yaakov, S., 2019, Magnetic design, Switch mode DC-DC converters, Part 3, Lecturer slides, http://www.ee.bgu.ac.il/~dcdc/slides/index.html. (Erişim Tarihi: 01.03.2020).
  • [22] Saeed, R., 2018, Design and characterisation of a high energy-density inductor. Ph.D. Thesis, University of Nottingham, England.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Sahin 0000-0002-5121-6173

Publication Date December 25, 2020
Published in Issue Year 2020 Volume: 24 Issue: 3

Cite

APA Sahin, M. (2020). Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 689-695. https://doi.org/10.19113/sdufenbed.543986
AMA Sahin M. Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları. J. Nat. Appl. Sci. December 2020;24(3):689-695. doi:10.19113/sdufenbed.543986
Chicago Sahin, Mustafa. “Endüktans Seçim Kriteri Ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 3 (December 2020): 689-95. https://doi.org/10.19113/sdufenbed.543986.
EndNote Sahin M (December 1, 2020) Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 689–695.
IEEE M. Sahin, “Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları”, J. Nat. Appl. Sci., vol. 24, no. 3, pp. 689–695, 2020, doi: 10.19113/sdufenbed.543986.
ISNAD Sahin, Mustafa. “Endüktans Seçim Kriteri Ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (December 2020), 689-695. https://doi.org/10.19113/sdufenbed.543986.
JAMA Sahin M. Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları. J. Nat. Appl. Sci. 2020;24:689–695.
MLA Sahin, Mustafa. “Endüktans Seçim Kriteri Ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 3, 2020, pp. 689-95, doi:10.19113/sdufenbed.543986.
Vancouver Sahin M. Endüktans Seçim Kriteri ve Güç Elektroniği Uygulamaları için Tasarım Aşamaları. J. Nat. Appl. Sci. 2020;24(3):689-95.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.