Research Article
BibTex RIS Cite

TV Uygulaması için Yüksek Frekans RFID Modüllerinin Farklı Şekil ve Geometrideki Antenler ile Performans Karşılaştırılması

Year 2020, Volume: 24 Issue: 3, 593 - 603, 25.12.2020
https://doi.org/10.19113/sdufenbed.682004

Abstract

Bu makalede, güvenli TV erişim uygulamaları için kullanılan 13.56MHz Radyo Frekansı Tanımlama (RFID) okuyucunun tasarımı incelenmektedir. Ayrıca, optimum operasyonel mükemmellik elde etmek için okuyucu antenlerinin farklı geometri ve boyutları arasındaki performans analizini sunar. Kare (4 döngü ve 6 döngü), dikdörtgen ve dairesel antenler olmak üzere, dört farklı geometrili ve boyutlu antenler tasarlanmış ve analiz edilmiştir. Optimum performansa ulaşmanın en iyi yolunu bulmak için, antenleri kazanç, okuma mesafesi ve maliyet performansları açısından, simülasyonları, hesaplamaları ve ölçümleri yapılıp, metaller ve akıllı kartların yakınlığı göz önünde bulundurularak, doğruluğu ve güvenilirliği karşılaştırarak yapılmıştır. Güvenli TV erişimi için tasarlanan okuyucunun pasif bir etiketle çalışması amaçlamaktadır. Dikdörtgen anten 13.56 MHz ile çalışırken, geri dönüş kaybı -27 dB olarak tespit edilmiştir. İstenen uygulamada, 6 döngülü kare anten ve dairesel anten optimum 13.56MHz frekanstan farklı çalışmaktadır. Bu sebeple ek test ve ayarlamalar, konusu geçen antenler için gereksiz ön görülmüştür. Bu tür TV uygulamaları için en iyi sonucunu ise, 4 döngülü kare anten kullanarak, 13.56MHz çalışma frekansında dönüş kaybı -30 dB olarak ölçerek tespit etmiş olduk. Ek olarak sistem performansını, metal yakınlıklarından ve akıllı kartlardan kaynaklanan kapasitif etkilerin ortaya çıkardığı problemlere karşı optimize etmek için; eşleştirme ve kapasitans ayarlamak gibi teknikler tartışılmış, sunulmuştur. Bu makale, RFID sistemlerinin performansını, metal ve akıllı kart etkileri ile farklı boyutlu ve geometrili antenleri karşılaştırmayı, en iyi anten geometrisini ortaya koyarak da literatürdeki boşluğu doldurmayı amaçlamaktadır.

References

  • [1] Finkenzeller, K. 2010. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. John Wiley, Los Angeles, USA.
  • [2] Mayordomo, I., Berenguer, R., Garcia-Alonso, A., Fernandez, I., Gutierrez, Í. 2009. Design and Implementation of a Long-Range RFID Reader for Passive Transponders. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1283-1290.
  • [3] Weis, S. A. 2007. RFID (Radio Frequency Identification): Principles and Applications. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.5224&rep=rep1&type=pdf (Accessed Date: 09.10.2020).
  • [4] Liu, W., Wong, M. M. 2010. 3D RFID Simulation and Design - Factory Automation, 54 InTech, 2010.
  • [5] Gossar, M., Stark, M., Gebhart, M., Pribyl, W., Söser, P. 2011. Investigations to Achieve Very High Data Rates for Proximity Coupling Devices at 13.56 MHz and NFC Applications. 2011 3rd International Workshop on Near Field Communication (NFC), Hagenberg, 71-76.
  • [6] Novotny, D. R., Guerrieri, J. R., Francis, M., Remley, K. 2008. HF RFID electromagnetic emissions and performance. 2008 IEEE International Symposium on Electromagnetic Compatibility, 17-22 Aug., Detroit, MI, 1-7.
  • [7] Leong, K. S., Ng, M. L., Cole, P. H. 2006. Operational Considerations in Simulation and Deployment of RFID Systems. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 521-524.
  • [8] Pous, M. Azpúrua, M. A., Silva, F. 2015. Radiated transient interferences measurement procedure to evaluate digital communication systems. 2015 IEEE International Symposium on Electromagnetic Compatibility, 16-22 Aug., Dresden, 456-461.
  • [9] Gossar, M., Witschnig, H., Enzinger, H. 2010. Parameter analysis and reader architectures for broadband 13.56 MHz RFID systems. 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, 1524-1527.
  • [10] Mo, L., Zhang, H. 2007. RFID Antenna Near the Surface of Metal. 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, 803-806.
  • [11] Zhou, Y., Zhong, Z., Hong, Y. 2007. An Effective Fast Matching Oriented Slot Antenna Designing Method with RFID Tag Chip. 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, 575-578.
  • [12] Coca, E., Popa, V. 2007. Experimental results and EMC considerations on RFID location systems. 2007 1st Annual RFID Eurasia, Istanbul, 1-5.
  • [13] Manzi, G., Feliziani, M. 2008. Impact of UHF RFID IC impedance on the RFID system performances in presence of dielectric materials. 2008 International Symposium on Electromagnetic Compatibility - EMC Europe, 8-12 Sept., Hamburg, 1-6.
  • [14] Jamali, B., Bates, B. D. 2009. EMC considerations in deployment of RFID systems. 2009 Electromagnetic Compatibility Symposium Adelaide, 16 Aug.-18 Sept., Adelaide, SA, 8 – 12.
  • [15] Mittra, R., Stupf, M., Mosig, J. R., Yeo, J. 2006. Some novel designs for RFID tags and their performance enhancement with metamaterials. First European Conference on Antennas and Propagation, Nice, 1-4.
  • [16] Benelli, G., Parrino, S., Pozzebon, A. 2009. Possible configurations and geometries of long range HF RFID antenna gates. 2009 6th International Symposium on Wireless Communication Systems, Tuscany, Italy, 46-50.
  • [17] Wang, H., Wang, G., Shu, Y. 2007. Design of RFID Reader Using Multi-Antenna with Difference Spatial Location. 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, 2070-2073.
  • [18] Rao, K. V. S., Nikitin, P. V., Lam, S. F. 2005. Antenna design for UHF RFID tags: a review and a practical application. IEEE Transactions on Antennas and Propagation, 53 (12), 3870-3876.
  • [19] Philips Semiconductor, 2004. Near Field Communication PN531-µC based Transmission module.http://static6.arrow.com/aropdfconversion/437fdc895b365886a22c68cefea1d05960ed8856/100020.pdf (Accessed Date: 09.10.2020).
  • [20] NXP AN1445. 2010. Antenna Design Guide for MFRC52x, PN51x and PN53xs. https://my.eng.utah.edu/~mlewis/ref/NFC/AN1445.pdf (Accessed Date: 09.10.2020).
  • [21] Ibrahim, N. A., Ahmed, H. M., El-Tager, A. M. 2012. Design of a transceiver RF front-end for 2.45 GHz RFID readers. The 2nd Middle East Conference on Antennas and Propagation (MECAP), Cairo, 1-5.
  • [22] Microchip. 2004. MicroID 13.56 MHz RFID System Design Guide. http://ww1.microchip.com/downloads/en/DeviceDoc/21299E.pdf, 2004 (Accessed Date: 09.10.2020).
  • [23] NXP AN142522. 2011. AN142522 RF Amplifier for NXP Contactless NFC Reader ICs. https://manualzz.com/doc/9384171/an142522-rf-amplifier-for-nxp-contactless-nfc-reader-ic-s (Accessed Date: 09.10.2020).
  • [24] Gebhart, M., Birnstingl, S., Bruckbauer, J., Merlin, E. 2008. Properties of a Test Bench to Verify Standard Compliance of Proximity Transponders. 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, 306–310.
  • [25] Schober, A., Ciacci, M., Gebhart, M. 2013. An NFC Air Interface Coupling Model for Contactless System Performance Estimation. Proceedings of the 12th International Conference on Telecommunications, Zagreb, 243–250.

High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications

Year 2020, Volume: 24 Issue: 3, 593 - 603, 25.12.2020
https://doi.org/10.19113/sdufenbed.682004

Abstract

This paper examines the design of a 13.56 MHz Radio Frequency Identification (RFID) reader that is used in secure TV access applications. It also presents the performance analysis between different geometry and sizes of the reader’s antennas in order to achieve the optimum operational excellence. Four different antenna geometries and sizes are designed and analyzed; square (4 loop and 6 loop), rectangular, and circular antennas. In order to find the best way for achieving the optimum performance, simulations, calculations, and measurements have been implemented by comparing the antennas in terms of gain, read distance, and cost performances with the availability of proximity of metals and smart cards, considering accuracy and reliability. The reader design for secure TV access is aimed to work with a passive tag. The rectangular antenna operated at the 13.56 MHz of frequency level with a return loss of -27 dB. The 6 loop square antenna and circular antenna operated with frequencies different than the optimum frequency of 13.56 MHz for the desired application, so the adjustments and other tests were not necessary for such antennas. It has been observed that for such TV applications, the best performance in terms of read range and gain, is achieved for a read distance up to 5 cm using the 4 loop square antenna operating at the 13.56 MHz of frequency level with a return loss of -30 dB. Some enhancement techniques to optimize system performance against the capacitive effects of close proximity to metals and smart cards are also discussed like detuning the capacitor values in the matching circuit. This paper aims to fill the gap in literature in observing RFID systems’ performance with comparison of different size and geometry antennas by setting forth the best antenna geometry with metal and smart card effects.

References

  • [1] Finkenzeller, K. 2010. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication. John Wiley, Los Angeles, USA.
  • [2] Mayordomo, I., Berenguer, R., Garcia-Alonso, A., Fernandez, I., Gutierrez, Í. 2009. Design and Implementation of a Long-Range RFID Reader for Passive Transponders. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1283-1290.
  • [3] Weis, S. A. 2007. RFID (Radio Frequency Identification): Principles and Applications. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.5224&rep=rep1&type=pdf (Accessed Date: 09.10.2020).
  • [4] Liu, W., Wong, M. M. 2010. 3D RFID Simulation and Design - Factory Automation, 54 InTech, 2010.
  • [5] Gossar, M., Stark, M., Gebhart, M., Pribyl, W., Söser, P. 2011. Investigations to Achieve Very High Data Rates for Proximity Coupling Devices at 13.56 MHz and NFC Applications. 2011 3rd International Workshop on Near Field Communication (NFC), Hagenberg, 71-76.
  • [6] Novotny, D. R., Guerrieri, J. R., Francis, M., Remley, K. 2008. HF RFID electromagnetic emissions and performance. 2008 IEEE International Symposium on Electromagnetic Compatibility, 17-22 Aug., Detroit, MI, 1-7.
  • [7] Leong, K. S., Ng, M. L., Cole, P. H. 2006. Operational Considerations in Simulation and Deployment of RFID Systems. 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 521-524.
  • [8] Pous, M. Azpúrua, M. A., Silva, F. 2015. Radiated transient interferences measurement procedure to evaluate digital communication systems. 2015 IEEE International Symposium on Electromagnetic Compatibility, 16-22 Aug., Dresden, 456-461.
  • [9] Gossar, M., Witschnig, H., Enzinger, H. 2010. Parameter analysis and reader architectures for broadband 13.56 MHz RFID systems. 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, 1524-1527.
  • [10] Mo, L., Zhang, H. 2007. RFID Antenna Near the Surface of Metal. 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, 803-806.
  • [11] Zhou, Y., Zhong, Z., Hong, Y. 2007. An Effective Fast Matching Oriented Slot Antenna Designing Method with RFID Tag Chip. 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, 575-578.
  • [12] Coca, E., Popa, V. 2007. Experimental results and EMC considerations on RFID location systems. 2007 1st Annual RFID Eurasia, Istanbul, 1-5.
  • [13] Manzi, G., Feliziani, M. 2008. Impact of UHF RFID IC impedance on the RFID system performances in presence of dielectric materials. 2008 International Symposium on Electromagnetic Compatibility - EMC Europe, 8-12 Sept., Hamburg, 1-6.
  • [14] Jamali, B., Bates, B. D. 2009. EMC considerations in deployment of RFID systems. 2009 Electromagnetic Compatibility Symposium Adelaide, 16 Aug.-18 Sept., Adelaide, SA, 8 – 12.
  • [15] Mittra, R., Stupf, M., Mosig, J. R., Yeo, J. 2006. Some novel designs for RFID tags and their performance enhancement with metamaterials. First European Conference on Antennas and Propagation, Nice, 1-4.
  • [16] Benelli, G., Parrino, S., Pozzebon, A. 2009. Possible configurations and geometries of long range HF RFID antenna gates. 2009 6th International Symposium on Wireless Communication Systems, Tuscany, Italy, 46-50.
  • [17] Wang, H., Wang, G., Shu, Y. 2007. Design of RFID Reader Using Multi-Antenna with Difference Spatial Location. 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, 2070-2073.
  • [18] Rao, K. V. S., Nikitin, P. V., Lam, S. F. 2005. Antenna design for UHF RFID tags: a review and a practical application. IEEE Transactions on Antennas and Propagation, 53 (12), 3870-3876.
  • [19] Philips Semiconductor, 2004. Near Field Communication PN531-µC based Transmission module.http://static6.arrow.com/aropdfconversion/437fdc895b365886a22c68cefea1d05960ed8856/100020.pdf (Accessed Date: 09.10.2020).
  • [20] NXP AN1445. 2010. Antenna Design Guide for MFRC52x, PN51x and PN53xs. https://my.eng.utah.edu/~mlewis/ref/NFC/AN1445.pdf (Accessed Date: 09.10.2020).
  • [21] Ibrahim, N. A., Ahmed, H. M., El-Tager, A. M. 2012. Design of a transceiver RF front-end for 2.45 GHz RFID readers. The 2nd Middle East Conference on Antennas and Propagation (MECAP), Cairo, 1-5.
  • [22] Microchip. 2004. MicroID 13.56 MHz RFID System Design Guide. http://ww1.microchip.com/downloads/en/DeviceDoc/21299E.pdf, 2004 (Accessed Date: 09.10.2020).
  • [23] NXP AN142522. 2011. AN142522 RF Amplifier for NXP Contactless NFC Reader ICs. https://manualzz.com/doc/9384171/an142522-rf-amplifier-for-nxp-contactless-nfc-reader-ic-s (Accessed Date: 09.10.2020).
  • [24] Gebhart, M., Birnstingl, S., Bruckbauer, J., Merlin, E. 2008. Properties of a Test Bench to Verify Standard Compliance of Proximity Transponders. 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, 306–310.
  • [25] Schober, A., Ciacci, M., Gebhart, M. 2013. An NFC Air Interface Coupling Model for Contactless System Performance Estimation. Proceedings of the 12th International Conference on Telecommunications, Zagreb, 243–250.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Heba Yüksel 0000-0002-6324-4446

Publication Date December 25, 2020
Published in Issue Year 2020 Volume: 24 Issue: 3

Cite

APA Yüksel, H. (2020). High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 593-603. https://doi.org/10.19113/sdufenbed.682004
AMA Yüksel H. High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications. J. Nat. Appl. Sci. December 2020;24(3):593-603. doi:10.19113/sdufenbed.682004
Chicago Yüksel, Heba. “High Frequency RFID Module Design and Performance Comparison Between Different Antenna Geometries for TV Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no. 3 (December 2020): 593-603. https://doi.org/10.19113/sdufenbed.682004.
EndNote Yüksel H (December 1, 2020) High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 593–603.
IEEE H. Yüksel, “High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications”, J. Nat. Appl. Sci., vol. 24, no. 3, pp. 593–603, 2020, doi: 10.19113/sdufenbed.682004.
ISNAD Yüksel, Heba. “High Frequency RFID Module Design and Performance Comparison Between Different Antenna Geometries for TV Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (December 2020), 593-603. https://doi.org/10.19113/sdufenbed.682004.
JAMA Yüksel H. High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications. J. Nat. Appl. Sci. 2020;24:593–603.
MLA Yüksel, Heba. “High Frequency RFID Module Design and Performance Comparison Between Different Antenna Geometries for TV Applications”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 24, no. 3, 2020, pp. 593-0, doi:10.19113/sdufenbed.682004.
Vancouver Yüksel H. High Frequency RFID Module Design and Performance Comparison between Different Antenna Geometries for TV Applications. J. Nat. Appl. Sci. 2020;24(3):593-60.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.