Research Article
BibTex RIS Cite

Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads

Year 2022, Volume: 26 Issue: 1, 115 - 121, 25.04.2022
https://doi.org/10.19113/sdufenbed.982112

Abstract

Poly(ethylene glycol dimethacrylate-2-vinyl pyridine)-TiO2 [poly (EGDMA-2-VP)] - TiO2 microbeads were synthesized by suspension polymerization method for photocatalytic decolorization of textile dyes from aqueous solution. The synthesized cross-linked [poly (EGDMA-2-VP)] - TiO2 microbeads were characterized by scanning electron microscopy (SEM), X-ray Diffraction (XRD)
and fourier transform infrared spectroscopy (FTIR). To investigate the usability of the obtained microbeads in dye decolorization, the paramreters such as pH, polymer amount, time, and dye concentration were examined both under sunlight and 366 nm UV light. Optimum conditions under which maximum photocatalytic decolorization of the dye were pH 3, polymer amount 0.05 g, dye concentration 30 mg /L and time 5 hours.

Supporting Institution

This work was supported by the Research Fund of The University of Uludag Project Number: OUAP-2019/9.

Project Number

This work was supported by the Research Fund of The University of Uludag Project Number: OUAP-2019/9.

Thanks

This work was supported by the Research Fund of The University of Uludag Project Number: OUAP-2019/9.

References

  • [1] Hassaan, M. A., El Nemr, A., & Hassaan, A. 2017. Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering, 1(3), 64-67.
  • [2] Tehrani-Bagha, A. R., Mahmoodi, N. M., & Menger, F. M. 2010. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 260(1-3), 34-38.
  • [3] Khan, S., & Malik, A. 2014. Environmental and health effects of textile industry wastewater. In Environmental deterioration and human health (pp. 55-71). Springer, Dordrech
  • [4] Chequer, F. M. D., Lizier, T. M., de Felício, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., ... & de Oliveira, D. P. 2011. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicology in Vitro, 25(8), 2054-2063.
  • [5] Mani, S., Chowdhary, P., & Bharagava, R. N. 2019. Textile wastewater dyes: toxicity profile and treatment approaches. In Emerging and eco-friendly approaches for waste management (pp. 219-244). Springer, Singapore.
  • [6] Humelnicu, I., Băiceanu, A., Ignat, M. E., & Dulman, V. 2017. The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Process Safety and Environmental Protection, 105, 274-287.
  • [7] Noreen, S., Tahira, M., Ghamkhar, M., Hafiz, I., Nadeem, R., Murtaza, M. A., ... & Naseem, Z. 2021. Treatment of textile wastewater containing acid dye using novel7polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty). Journal of Materials Research and Technology, 14, 25-35
  • [8] Li, H., Huang, H., Yan, X., Liu, C., & Li, L. 2021. A Calix [4] arene-crosslinked polymer for rapid adsorption of cationic dyes in water. Materials Chemistry and Physics, 263, 124295.
  • [9] Liu, Y., Zhu, M., Chen, M., Ma, L., Yang, B., Li, L., & Tu, W. 2019. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chemical Engineering Journal, 359, 47-57.
  • [10] Wu, J. S., Liu, C. H., Chu, K. H., & Suen, S. Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of membrane science, 309(1-2), 239-245.
  • [11] Tan, B. H., Teng, T. T., & Omar, A. M. 2000. Removal of dyes and industrial dye wastes by magnesium chloride. Water research, 34(2), 597-601.
  • [12] Arslan, I., Balcioǧlu, I. A., & Bahnemann, D. W. 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes and pigments, 47(3), 207-218
  • [13] Golob, V., Vinder, A., & Simonič, M. 2005. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and pigments, 67(2), 93-97.
  • [14] Konstantinou, I. K., & Albanis, T. A. 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49(1), 1-14.
  • [15] Kangwansupamonkon, W., Jitbunpot, W., & Kiatkamjornwong, S. 2010. Photocatalytic efficiency of TiO2/poly [acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polymer Degradation and Stability, 95(9), 1894-1902.
  • [16] Sahoo, C., Gupta, A. K., & Sasidharan Pillai, I. M. 2012. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. Journal of Environmental Science and Health, Part A, 47(10), 1428-1438.
  • [17] Kaur, S., & Singh, V. 2007. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. Journal of Hazardous Materials, 141(1), 230-236.
  • [18] Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. 2006. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water research, 40(6), 1276-1286
  • [19] Ram, C., Pareek, R. K., & Singh, V. 2012. Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst. International Journal of Theoretical & Applied Sciences, 4(2), 82-88
  • [20] Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Agriculture and Natural Resources, 42(5), 357-361.
  • [21] Özel, Ş. (2019). Fotokatalitik, manyetik poli (etilenglikoldimetakrilat-vinil fosfonik asit)-tio2 küre formunda polimer mikrokürelerin sentezi, karakterizasyonu ve reaktif mavi 221 boyarmaddesinin adsorpsiyon-desorpsiyon, fotokatalitik dekolorizasyon parametrelerinin araştırılması (Master's thesis, Bursa Uludağ Üniversitesi).
  • [22] Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A. J. 2014. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 26(24), 8445.
  • [23] Elhadj, M., Samira, A., Mohamed, T., Djawad, F., Asma, A., & Djamel, N. 2020. Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Separation Science and Technology, 55(5), 867-885.
  • [24] Krishnakumar, B., & Swaminathan, M. 2011. Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 739-744
  • [25] Deng, F., Li, Y., Luo, X., Yang, L., & Tu, X. 2012. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 395, 183-189.

Poli(etilen glikol dimetakrilat-2-vinil piridin) -TiO2 Fotokatalitik Polimer Mikro Küreleri ile Asit Violet 7 Boyasının Fotokatalitik Renk Giderme Parametrelerinin İncelenmesi

Year 2022, Volume: 26 Issue: 1, 115 - 121, 25.04.2022
https://doi.org/10.19113/sdufenbed.982112

Abstract

Poli(etilen glikol dimetakrilat-2-vinil piridin)-TiO2 [poli(EGDMA-2-VP)] - TiO2 mikro küreleri, tekstil boyar maddelerinin sulu çözeltiden fotokatalitik renk giderimi için süspansiyon polimerizasyon yöntemi ile sentezlendi. Sentezlenen çapraz bağlı [poli (EGDMA-2-VP)] - TiO2 mikro küreleri, taramalı elektron mikroskobu (SEM), X-ışını difraktometresi (XRD) ve fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile karakterize edildi. Elde edilen mikro kürelerin boyar madde renk gidermede kullanılabilirliğini araştırmak için pH, polimer miktarı, zaman ve boya konsantrasyonu parametreleri, hem güneş ışığı altında hem de 366 nm UV ışığı altında incelendi. Boyar maddenin maksimum fotokatalitik renk gideriminin meydana geldiği optimum koşullar pH 3, polimer miktarı 0.05 g, boya konsantrasyonu 30 mg/L ve süre 5 saattir.

Project Number

This work was supported by the Research Fund of The University of Uludag Project Number: OUAP-2019/9.

References

  • [1] Hassaan, M. A., El Nemr, A., & Hassaan, A. 2017. Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering, 1(3), 64-67.
  • [2] Tehrani-Bagha, A. R., Mahmoodi, N. M., & Menger, F. M. 2010. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination, 260(1-3), 34-38.
  • [3] Khan, S., & Malik, A. 2014. Environmental and health effects of textile industry wastewater. In Environmental deterioration and human health (pp. 55-71). Springer, Dordrech
  • [4] Chequer, F. M. D., Lizier, T. M., de Felício, R., Zanoni, M. V. B., Debonsi, H. M., Lopes, N. P., ... & de Oliveira, D. P. 2011. Analyses of the genotoxic and mutagenic potential of the products formed after the biotransformation of the azo dye Disperse Red 1. Toxicology in Vitro, 25(8), 2054-2063.
  • [5] Mani, S., Chowdhary, P., & Bharagava, R. N. 2019. Textile wastewater dyes: toxicity profile and treatment approaches. In Emerging and eco-friendly approaches for waste management (pp. 219-244). Springer, Singapore.
  • [6] Humelnicu, I., Băiceanu, A., Ignat, M. E., & Dulman, V. 2017. The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Process Safety and Environmental Protection, 105, 274-287.
  • [7] Noreen, S., Tahira, M., Ghamkhar, M., Hafiz, I., Nadeem, R., Murtaza, M. A., ... & Naseem, Z. 2021. Treatment of textile wastewater containing acid dye using novel7polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty). Journal of Materials Research and Technology, 14, 25-35
  • [8] Li, H., Huang, H., Yan, X., Liu, C., & Li, L. 2021. A Calix [4] arene-crosslinked polymer for rapid adsorption of cationic dyes in water. Materials Chemistry and Physics, 263, 124295.
  • [9] Liu, Y., Zhu, M., Chen, M., Ma, L., Yang, B., Li, L., & Tu, W. 2019. A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chemical Engineering Journal, 359, 47-57.
  • [10] Wu, J. S., Liu, C. H., Chu, K. H., & Suen, S. Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of membrane science, 309(1-2), 239-245.
  • [11] Tan, B. H., Teng, T. T., & Omar, A. M. 2000. Removal of dyes and industrial dye wastes by magnesium chloride. Water research, 34(2), 597-601.
  • [12] Arslan, I., Balcioǧlu, I. A., & Bahnemann, D. W. 2000. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dyes and pigments, 47(3), 207-218
  • [13] Golob, V., Vinder, A., & Simonič, M. 2005. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and pigments, 67(2), 93-97.
  • [14] Konstantinou, I. K., & Albanis, T. A. 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49(1), 1-14.
  • [15] Kangwansupamonkon, W., Jitbunpot, W., & Kiatkamjornwong, S. 2010. Photocatalytic efficiency of TiO2/poly [acrylamide-co-(acrylic acid)] composite for textile dye degradation. Polymer Degradation and Stability, 95(9), 1894-1902.
  • [16] Sahoo, C., Gupta, A. K., & Sasidharan Pillai, I. M. 2012. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. Journal of Environmental Science and Health, Part A, 47(10), 1428-1438.
  • [17] Kaur, S., & Singh, V. 2007. TiO2 mediated photocatalytic degradation studies of Reactive Red 198 by UV irradiation. Journal of Hazardous Materials, 141(1), 230-236.
  • [18] Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. 2006. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water research, 40(6), 1276-1286
  • [19] Ram, C., Pareek, R. K., & Singh, V. 2012. Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst. International Journal of Theoretical & Applied Sciences, 4(2), 82-88
  • [20] Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Agriculture and Natural Resources, 42(5), 357-361.
  • [21] Özel, Ş. (2019). Fotokatalitik, manyetik poli (etilenglikoldimetakrilat-vinil fosfonik asit)-tio2 küre formunda polimer mikrokürelerin sentezi, karakterizasyonu ve reaktif mavi 221 boyarmaddesinin adsorpsiyon-desorpsiyon, fotokatalitik dekolorizasyon parametrelerinin araştırılması (Master's thesis, Bursa Uludağ Üniversitesi).
  • [22] Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A. J. 2014. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 26(24), 8445.
  • [23] Elhadj, M., Samira, A., Mohamed, T., Djawad, F., Asma, A., & Djamel, N. 2020. Removal of Basic Red 46 dye from aqueous solution by adsorption and photocatalysis: equilibrium, isotherms, kinetics, and thermodynamic studies. Separation Science and Technology, 55(5), 867-885.
  • [24] Krishnakumar, B., & Swaminathan, M. 2011. Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 739-744
  • [25] Deng, F., Li, Y., Luo, X., Yang, L., & Tu, X. 2012. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 395, 183-189.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Şeyma Yalçın 0000-0002-7633-2576

Ali Kara 0000-0003-2457-6314

Project Number This work was supported by the Research Fund of The University of Uludag Project Number: OUAP-2019/9.
Publication Date April 25, 2022
Published in Issue Year 2022 Volume: 26 Issue: 1

Cite

APA Yalçın, Ş., & Kara, A. (2022). Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 115-121. https://doi.org/10.19113/sdufenbed.982112
AMA Yalçın Ş, Kara A. Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads. J. Nat. Appl. Sci. April 2022;26(1):115-121. doi:10.19113/sdufenbed.982112
Chicago Yalçın, Şeyma, and Ali Kara. “Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene Glycol Dimethacrylate-2-Vinyl Pyridine) -TiO2 Photocatalytic Polymer Microbeads”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 1 (April 2022): 115-21. https://doi.org/10.19113/sdufenbed.982112.
EndNote Yalçın Ş, Kara A (April 1, 2022) Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 115–121.
IEEE Ş. Yalçın and A. Kara, “Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads”, J. Nat. Appl. Sci., vol. 26, no. 1, pp. 115–121, 2022, doi: 10.19113/sdufenbed.982112.
ISNAD Yalçın, Şeyma - Kara, Ali. “Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene Glycol Dimethacrylate-2-Vinyl Pyridine) -TiO2 Photocatalytic Polymer Microbeads”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (April 2022), 115-121. https://doi.org/10.19113/sdufenbed.982112.
JAMA Yalçın Ş, Kara A. Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads. J. Nat. Appl. Sci. 2022;26:115–121.
MLA Yalçın, Şeyma and Ali Kara. “Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene Glycol Dimethacrylate-2-Vinyl Pyridine) -TiO2 Photocatalytic Polymer Microbeads”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 1, 2022, pp. 115-21, doi:10.19113/sdufenbed.982112.
Vancouver Yalçın Ş, Kara A. Investigation of Photocatalytic Decolorization Parameters of Acid Violet 7 Dye With poly(ethylene glycol dimethacrylate-2-vinyl pyridine) -TiO2 Photocatalytic Polymer Microbeads. J. Nat. Appl. Sci. 2022;26(1):115-21.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.