Research Article
BibTex RIS Cite

Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway

Year 2022, Volume: 26 Issue: 2, 305 - 313, 20.08.2022
https://doi.org/10.19113/sdufenbed.1000547

Abstract

Ground Penetration Radar (GPR) is an important non-destructive testing method used in quality control studies on highways. In this study, the GPR device was used to determine the pavement layer thicknesses and to reveal the anomalies that occurred during the manufacturing on the highways. Within the scope of the research, field studies were carried out in a certain part of the Antalya-Burdur-Isparta highway (17 km). Scanning was performed at two different frequency rates (600 and 1600 MHz) using the GPR device. Two consecutive GPR scans were performed in the year the highway was renewed and the following year. In the first year GPR scans, it was determined whether the planned layer thicknesses were reached or not and abnormal conditions arising from the construction of the highway. In the second year GPR scans, the changes that occur on the highway after one year under the traffic load were determined. With this study, it has been demonstrated once again that the GPR test method is an alternative to destructive testing methods and is a test method that can collect information about the highway without damaging.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

3408-D2-13 and 2666-M-10

Thanks

This work was supported by Scientific Research Projects Coordinator of Suleyman Demirel University with the projects numbered 3408-D2-13 and 2666-M-10. The Authors also special thanks to COST (European COoperation in Science and Technology) Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”.

References

  • [1] Kim, S. W., Hyun, S. Y., Cho, J. H., & Kim, S. Y. (2011). GPR monitoring system for evaluation of asphalt pavement. Resistor, 900, 20.
  • [2] Wensel, M., Shalaby, A., Thiessen, M., & Mah, V. (2002, June). Investigation of asphalt pavement rutting at two Canadian airfields. In 4th Transportation Specialty Conference of the Canadian Society for Civil Engineering, Montreal, Canada.
  • [3] Spagnolini, U. (1997). Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Transactions on Geoscience and Remote sensing, 35(2), 454-463.
  • [4] Solla, M., Lagüela, S., González-Jorge, H., & Arias, P. (2014). Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings. Ndt & E International, 62, 55-65.
  • [5] Brownlee, T. J., Finnie, S., & Wightman, D. (2007, August). Identification of potential highways maintenance schemes. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 160, No. 3, pp. 139-146). Thomas Telford Ltd.
  • [6] Ferreira, A. J. L. (2011, September). Briefing: New developments in pavement maintenance. In Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 164, No. 3, pp. 153-155). Thomas Telford Ltd.
  • [7] Benedetto, A., & Pensa, S. (2007). Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. Journal of Applied geophysics, 62(2), 107-123.
  • [8] Park, H. M., Kim, J. W., Hwang, S. D., & Lee, H. J. (2005). Determination of the layer thickness for long-life asphalt pavement. International Journal of Highway Engineering, 7(2), 23-31.
  • [9] Subagio, B. S., Cahyanto, H. T., Rachman, A., & Mardiyah, S. (2005). Multi-Layer Pavement Structural Analysis Using Method of Equivalent Thickness Case Study: Jakarta—Cikampek Toll Road. Journal of the Eastern Asia Society for Transportation Studies, 6, 55-65.
  • [10] Plati, C., & Loizos, A. (2013). Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies. Journal of Applied Geophysics, 97, 3-10.
  • [11] Goel, A., & Das, A. (2008). Nondestructive testing of asphalt pavements for structural condition evaluation: a state of the art. Nondestructive Testing and Evaluation, 23(2), 121-140.
  • [12] de León Izeppi, E., Flintsch, G. W., & McGhee, K. K. (2008). High-speed, noncontact digital imaging system for inspection of hot-mix asphalt pavements. Journal of transportation engineering, 134(6), 246-254.
  • [13] Loizos, A., & Plati, C. (2007). Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT & e International, 40(2), 147-157.
  • [14] Morey, R. M. (1998). Ground penetrating radar for evaluating subsurface conditions for transportation facilities. Transportation Research Board.
  • [15] Saarenketo T. (1992). Ground Penetrating Applications in Road Desihn and Construction in Finnish Lapland. Geological Survey of Finland, Special Paper 15, pp. 161-167.
  • [16] Saarenketo T, Scullion T. (1994). Ground Penetrating Radar Applications on Roads and Highways. Research report 1923-2F, Texas Transportation Institute, College Station, Texas, 36 pp.
  • [17] Saarenketo T. (1997). Using Ground Penetrating Radar and Dielectric Probe Measurements in Pavement Density Quality Control. Transportation Research record 1997, pp. 34-41.
  • [18] Saarenketo T, Roimela P. (1998). Ground Penetrating Radar Technique in Asphalt Pavement Density Quality Control. Proceedings of the Seventh International Conference on Ground Penetrating Radar, May 27-30, 1998, Lawrence Kansas. 2, pp. 461-466.
  • [19] Saarenketo T, Scullion T. (2000). Road Evaluation with Ground Penetrating Radar, Journal of Applied Geophysics 43, 119-138.
  • [20] Saarenketo T. (2008). NDT Transportation. Chapter 13 in text book. Ground Penetrating Radar: Theory and Applications. Ed- Harry M. Jol. Publisher Elsevier, 524 p.
  • [21] Al-Qadi IL, Leng Z. Al Larkin, (2011). In-Place Hot Mix Asphalt Density Estimation Using Ground Penetrating Radar. Technical Report of Research, Federal Aviation Administration Under Cooperative Agreement, DOT 05-C-AT-UIUC, ICT Report No. 11-096.
  • [22] Colagrande, S., Ranalli, D., Tallini, M., (2011). Ground Penetrating Radar Assessment of Flexible Road Pavement Degradation, International Journal of Geophysics, Article ID 989136, doi:10.1155/2011/989136
  • [23] Ahmad. N. Lorenzl H., (2011). Crack Detection in Asphalt Pavements, How useful is the GPR?. Wistuba Braunschweig Pavement Engineering Center (ISBS), Technische Universität Braunschweig, 978-1-4577-0333-1/11/2011 IEEE [24] Mardeni, R., Raja Abdullah R.S.A., Shafri, H.Z.M., (2010). Road Pavement Density Analysis Using A New Non-Destructive Ground Penetrating Radar System, Progress In Electromagnetics Research B, 21, 399-417.
  • [25] Al-Qadi IL, Wei Xie, Roger Roberts, (2008), Scattering analysis of ground-penetrating radar data to quantify railroad ballast contamination, NDT&E International 41, 441– 447
  • [26] Zhou, F., & Scullion, T. (2007). Guidelines for evaluation of existing pavements for HMA overlay (No. FHWA/TX-07/0-5123-2). Texas Transportation Institute, Texas A & M University System.
  • [27] Black, K., & Kopac, P. (1992). The application of Ground-Penetrating Radar in highway engineering. Public roads, 56(3).
  • [28] Morcous G, Erdoğmuş E. (2009). Use of Ground Penetrating Radar for Construction Quality Assurance of Concrete Pavement. NDOR Project Number P307, Final Report, Principal Investigators, University of Nebraska – Lincoln.
  • [29] Gordon, M. O., Broughton, K., & Hardy, M. S. A. (1998). The assessment of the value of GPR imaging of flexible pavements. NDT & E International, 31(6), 429-438.
  • [30] Serin S. (2014). Modelling of the Physical and Mechanical Properties of Flexible Pavements by Means of Non-Destructive Testing Methods. Süleyman Demirel University, Ph. D. Thesis.

D330 Karayolu Burdur Kesiminde GPR ile Karayolu Üstyapı Tabaka Kalınlığı ve Tabakalardaki Anormalliklerin Belirlenmesi

Year 2022, Volume: 26 Issue: 2, 305 - 313, 20.08.2022
https://doi.org/10.19113/sdufenbed.1000547

Abstract

Zemin Penetrasyon Radarı (GPR) karayollarında kalite kontrol çalışmalarında kullanılan önemli bir tahribatsız test yöntemidir. Bu çalışmada, üstyapı tabaka kalınlıklarının tespiti ve karayollarında imalat esnasında oluşan anormallikleri ortaya koymak için GPR cihazı kullanılmıştır. Araştırma kapsamında Antalya-Burdur-Isparta karayolunun belli bir kesiminde (17 km) arazi çalışmaları yapılmıştır. GPR cihazı kullanılarak iki farklı frekans hızında (600 ve 1600 MHz) görüntüleme yapılmıştır. Karayolunun yenilendiği yıl ve bir sonraki yıl üst üste iki kez GPR taraması yapılmıştır. İlk yıl yapılan GPR taramalarında yapımda planlanan tabaka kalınlıklarına ulaşılıp ulaşılmadığı ve yolun yapımından kaynaklı anormal durumlar tespit edilmiştir. İkinci yıl yapılan GPR taramalarında ise trafik yükü altında bir yıl sonrasında karayolunda meydana gelen değişimler belirlenmiştir. Bu çalışma ile GPR test yönteminin tahribatlı test yöntemlerine alternatif ve karayoluna hasar vermeden bilgi toplayabilecek bir test yöntemi olduğu bir kez daha ortaya koyulmuştur.

Project Number

3408-D2-13 and 2666-M-10

References

  • [1] Kim, S. W., Hyun, S. Y., Cho, J. H., & Kim, S. Y. (2011). GPR monitoring system for evaluation of asphalt pavement. Resistor, 900, 20.
  • [2] Wensel, M., Shalaby, A., Thiessen, M., & Mah, V. (2002, June). Investigation of asphalt pavement rutting at two Canadian airfields. In 4th Transportation Specialty Conference of the Canadian Society for Civil Engineering, Montreal, Canada.
  • [3] Spagnolini, U. (1997). Permittivity measurements of multilayered media with monostatic pulse radar. IEEE Transactions on Geoscience and Remote sensing, 35(2), 454-463.
  • [4] Solla, M., Lagüela, S., González-Jorge, H., & Arias, P. (2014). Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings. Ndt & E International, 62, 55-65.
  • [5] Brownlee, T. J., Finnie, S., & Wightman, D. (2007, August). Identification of potential highways maintenance schemes. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 160, No. 3, pp. 139-146). Thomas Telford Ltd.
  • [6] Ferreira, A. J. L. (2011, September). Briefing: New developments in pavement maintenance. In Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 164, No. 3, pp. 153-155). Thomas Telford Ltd.
  • [7] Benedetto, A., & Pensa, S. (2007). Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. Journal of Applied geophysics, 62(2), 107-123.
  • [8] Park, H. M., Kim, J. W., Hwang, S. D., & Lee, H. J. (2005). Determination of the layer thickness for long-life asphalt pavement. International Journal of Highway Engineering, 7(2), 23-31.
  • [9] Subagio, B. S., Cahyanto, H. T., Rachman, A., & Mardiyah, S. (2005). Multi-Layer Pavement Structural Analysis Using Method of Equivalent Thickness Case Study: Jakarta—Cikampek Toll Road. Journal of the Eastern Asia Society for Transportation Studies, 6, 55-65.
  • [10] Plati, C., & Loizos, A. (2013). Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies. Journal of Applied Geophysics, 97, 3-10.
  • [11] Goel, A., & Das, A. (2008). Nondestructive testing of asphalt pavements for structural condition evaluation: a state of the art. Nondestructive Testing and Evaluation, 23(2), 121-140.
  • [12] de León Izeppi, E., Flintsch, G. W., & McGhee, K. K. (2008). High-speed, noncontact digital imaging system for inspection of hot-mix asphalt pavements. Journal of transportation engineering, 134(6), 246-254.
  • [13] Loizos, A., & Plati, C. (2007). Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT & e International, 40(2), 147-157.
  • [14] Morey, R. M. (1998). Ground penetrating radar for evaluating subsurface conditions for transportation facilities. Transportation Research Board.
  • [15] Saarenketo T. (1992). Ground Penetrating Applications in Road Desihn and Construction in Finnish Lapland. Geological Survey of Finland, Special Paper 15, pp. 161-167.
  • [16] Saarenketo T, Scullion T. (1994). Ground Penetrating Radar Applications on Roads and Highways. Research report 1923-2F, Texas Transportation Institute, College Station, Texas, 36 pp.
  • [17] Saarenketo T. (1997). Using Ground Penetrating Radar and Dielectric Probe Measurements in Pavement Density Quality Control. Transportation Research record 1997, pp. 34-41.
  • [18] Saarenketo T, Roimela P. (1998). Ground Penetrating Radar Technique in Asphalt Pavement Density Quality Control. Proceedings of the Seventh International Conference on Ground Penetrating Radar, May 27-30, 1998, Lawrence Kansas. 2, pp. 461-466.
  • [19] Saarenketo T, Scullion T. (2000). Road Evaluation with Ground Penetrating Radar, Journal of Applied Geophysics 43, 119-138.
  • [20] Saarenketo T. (2008). NDT Transportation. Chapter 13 in text book. Ground Penetrating Radar: Theory and Applications. Ed- Harry M. Jol. Publisher Elsevier, 524 p.
  • [21] Al-Qadi IL, Leng Z. Al Larkin, (2011). In-Place Hot Mix Asphalt Density Estimation Using Ground Penetrating Radar. Technical Report of Research, Federal Aviation Administration Under Cooperative Agreement, DOT 05-C-AT-UIUC, ICT Report No. 11-096.
  • [22] Colagrande, S., Ranalli, D., Tallini, M., (2011). Ground Penetrating Radar Assessment of Flexible Road Pavement Degradation, International Journal of Geophysics, Article ID 989136, doi:10.1155/2011/989136
  • [23] Ahmad. N. Lorenzl H., (2011). Crack Detection in Asphalt Pavements, How useful is the GPR?. Wistuba Braunschweig Pavement Engineering Center (ISBS), Technische Universität Braunschweig, 978-1-4577-0333-1/11/2011 IEEE [24] Mardeni, R., Raja Abdullah R.S.A., Shafri, H.Z.M., (2010). Road Pavement Density Analysis Using A New Non-Destructive Ground Penetrating Radar System, Progress In Electromagnetics Research B, 21, 399-417.
  • [25] Al-Qadi IL, Wei Xie, Roger Roberts, (2008), Scattering analysis of ground-penetrating radar data to quantify railroad ballast contamination, NDT&E International 41, 441– 447
  • [26] Zhou, F., & Scullion, T. (2007). Guidelines for evaluation of existing pavements for HMA overlay (No. FHWA/TX-07/0-5123-2). Texas Transportation Institute, Texas A & M University System.
  • [27] Black, K., & Kopac, P. (1992). The application of Ground-Penetrating Radar in highway engineering. Public roads, 56(3).
  • [28] Morcous G, Erdoğmuş E. (2009). Use of Ground Penetrating Radar for Construction Quality Assurance of Concrete Pavement. NDOR Project Number P307, Final Report, Principal Investigators, University of Nebraska – Lincoln.
  • [29] Gordon, M. O., Broughton, K., & Hardy, M. S. A. (1998). The assessment of the value of GPR imaging of flexible pavements. NDT & E International, 31(6), 429-438.
  • [30] Serin S. (2014). Modelling of the Physical and Mechanical Properties of Flexible Pavements by Means of Non-Destructive Testing Methods. Süleyman Demirel University, Ph. D. Thesis.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Sercan Serin 0000-0001-6025-6233

Mehmet Saltan 0000-0001-6221-4918

Serdal Terzi 0000-0002-4776-824X

Project Number 3408-D2-13 and 2666-M-10
Publication Date August 20, 2022
Published in Issue Year 2022 Volume: 26 Issue: 2

Cite

APA Serin, S., Saltan, M., & Terzi, S. (2022). Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 305-313. https://doi.org/10.19113/sdufenbed.1000547
AMA Serin S, Saltan M, Terzi S. Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway. J. Nat. Appl. Sci. August 2022;26(2):305-313. doi:10.19113/sdufenbed.1000547
Chicago Serin, Sercan, Mehmet Saltan, and Serdal Terzi. “Determination of Highway Pavement Layer Thickness and Layer Anomalies With GPR in Burdur Section of D330 Highway”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 2 (August 2022): 305-13. https://doi.org/10.19113/sdufenbed.1000547.
EndNote Serin S, Saltan M, Terzi S (August 1, 2022) Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 2 305–313.
IEEE S. Serin, M. Saltan, and S. Terzi, “Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway”, J. Nat. Appl. Sci., vol. 26, no. 2, pp. 305–313, 2022, doi: 10.19113/sdufenbed.1000547.
ISNAD Serin, Sercan et al. “Determination of Highway Pavement Layer Thickness and Layer Anomalies With GPR in Burdur Section of D330 Highway”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/2 (August 2022), 305-313. https://doi.org/10.19113/sdufenbed.1000547.
JAMA Serin S, Saltan M, Terzi S. Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway. J. Nat. Appl. Sci. 2022;26:305–313.
MLA Serin, Sercan et al. “Determination of Highway Pavement Layer Thickness and Layer Anomalies With GPR in Burdur Section of D330 Highway”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 2, 2022, pp. 305-13, doi:10.19113/sdufenbed.1000547.
Vancouver Serin S, Saltan M, Terzi S. Determination of Highway Pavement Layer Thickness and Layer Anomalies with GPR in Burdur Section of D330 Highway. J. Nat. Appl. Sci. 2022;26(2):305-13.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.