Applicability of Speed Breeding Technique in Shorten the Generation Cycle in Durum Wheat (Triticum durum L.)
Year 2022,
Volume: 26 Issue: 2, 292 - 298, 20.08.2022
Remzi Özkan
,
Merve Bayhan
,
Mehmet Yıldırım
,
Cuma Akıncı
Abstract
In this study, the response of some durum wheat genotypes to speed breeding conditions was investigated and the effect of long photoperiod conditions on plant height and spike characteristics, which are considered as yield criteria in wheat, was determined. The research was carried out in the semi-controlled greenhouse environment of the Field Crops Department in Dicle University Faculty of Agriculture. Four durum wheat genotypes (Svevo, Sena, Burgos and TBT16-9) were used as material in the study. Plants were exposed to a long photoperiod of 22 hours light and 2 hours dark conditions according to the basic principles of speed breeding, then harvested 20 days after anthesis and finally subjected to cold application to break dormancy. Method for breaking dormancy (+4 °C application) increased the germination rate of genotypes by 10.01% compared to normal germination conditions. Average germination rate was 80% without dormancy process. The strong relationship between earliness, plant height with yield criteria has shown that these parameters can be used as a selection criterion in early generations of genotypes to be developed under speed breeding conditions. As a result of the research, Svevo variety was the best response to long photoperiod conditions.
References
- [1] Çamurcu, H. 2005. Dünya Nüfus Artışı ve Getirdiği Sorunlar. Sosyal Bilimler Dergisi, 8(13), 87-105.
- [2] Ray, D. K., Mueller, N. D., West, P. C., Foley, J. A. 2013. Yield Trends are Insufficient to Double Global Crop Production by 2050. PloSOne, 8, e66428.
- [3] Ghosh, S., Watson, A., Gonzalez-Navarro, O., Ramirez-Gonzalez, R., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P., Hafeez, A., Hayta, S., Melton, R., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., Hickey, L. 2018. Speed Breeding in Growth Chambers and Glasshouses for Crop Breeding and Model Plant Research. Nature Protocols, 13(12), 2944-2963.
- [4] Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Md Hatta, M. A., Hinchliffe, A., Steed, A., Reynolds, D. Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E. Riaz, A., Martin, W. Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., Hickey, L. T. 2018. Speed Breeding is a Powerful Tool to Accelerate Crop Research and Breeding. Nature Plants, 4, 23–29.
- [5] Hickey, L. T., Germán, S. E., Pereyra, S. A., Diaz, J. E., Ziems, L. A., Fowler, R. A., Platz, G. J., Franckowiak, J. D., Dieters, M. J. 2017. Speed Breeding for Multiple Disease Resistance in Barley. Euphytica, 213(3), 1-14.
- [6] Jighly, A., Lin, Z., Pembleton, L. W., Cogan, N., Spangenberg, G. C., Hayes, B. J., Daetwyler, H. D. 2019. Boosting Genetic Gain in Allogamous Crops Via Speed Breeding and Genomic Selection. Frontiers in Plant Science, 10, 1364,
- [7] Li, H., Rasheed, A., Hickey, L. T., He, Z. 2018. Fast-forwarding Genetic Gain. Trends in Plant Science, 23, 184–186.
- [8] O’Connor, D. J., Wright, G. C., Dieters, M. J., George, D. L., Hunter, M. N., Tatnell, J. R., Fleischfresser, D. B. 2013. Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Science, 40(2), 107-114,
- [9] Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., Zhou, W. 2020. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and future outlook. International Journal of Molecular Science, 21(7), 2590.
- [10] Collard, B. C. Y., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., Verdeprado, H., Raghavan, C., Gregorio, G. B., Vial, L., Demont, M., Biswas, P. S., Iftekharuddaula, K. F., Rahman, K. A., Cobb, J. N., Rafiqul, I. M. 2017. Revisiting Rice Breeding Methods: Evaluating the Use 384 of Rapid Generation Advance (RGA) for Routine Rice Breeding. Plant Production Science, 20, 337–352.
- [11] Jähne, F., Hahn, V., Würschum, T., Leiser, W. L. 2020. Speed Breeding Shortday Crops by LED Controlled Light Schemes. Theoretical and Applied Genetics, 133, 2335–2342,
- [12] Nagatoshi, Y., Fujita, Y. 2019. Accelerating Soybean Breeding in a CO2 Supplemented Growth. Chamber Plant and Cell Physiology, 60, 77–84.
- [13] Alahmad, S., Dinglasan, E., Leung, K., Riaz, A., Derbal, N., Voss-Fels, K., Able, J., Bassi, F., Christopher, J., Hickey, L. 2018. Speed Breeding for Multiple Quantitative Traits in Durum Wheat. Plant Methods, 14(1), 1-15.
- [14] Akdağ, H. 2019. Hızlı ıslah tekniğiyle buğdayda haritalama popülasyonu ve geriye melez döllerin yetiştirilmesi. Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü, Biyomühendislik Anabilim Dalı, Yüksek Lisans Tezi, 51s, Karaman.
- [15] Cazzola, F., Bermejo, C., Julieta, G. I., Cointry, E. 2021. Speed Breeding in Pulses: an Opportunity to İmprove the Efficiency of Breeding Programs. Crop and Pasture Science, 72, 165-172.
[16] Chiurugwi, T., Kemp, S., Powell, W., Hickey, L. T. 2019. Speed Breeding Orphan Crops. Theoretical and Applied Genetics, 132, 607–616.
- [17] Smedley, D., Jacobsen, J. O. B., Jager, M., Kohler, S., Holtgrewe, M., Schubach, M., Washington, N. L. 2015. Next-generation Diagnostics and Disease-gene Discovery with the Exomiser. Nature Protocols, 10(12), 2004-2015.
Makarnalık Buğdayda (Triticum durum L.) Generasyon Süresinin Kısaltılmasında Hızlı Islah Tekniğinin Uygulanabilirliği
Year 2022,
Volume: 26 Issue: 2, 292 - 298, 20.08.2022
Remzi Özkan
,
Merve Bayhan
,
Mehmet Yıldırım
,
Cuma Akıncı
Abstract
Bu çalışmada bazı makarnalık buğday genotiplerinin hızlı ıslah (speed breeding) koşullarına tepkisi araştırılmış ve uzun fotoperiyot koşullarının buğdayda verim ile doğrudan ilişkili olan bitki boyu ve başak özellikleri üzerine etkisi belirlenmiştir. Araştırma Dicle Üniversitesi Ziraat Fakültesinde bulunan Tarla Bitkileri Bölümüne ait yarı kontrollü sera ortamında gerçekleştirilmiştir. Çalışmada materyal olarak 4 adet makarnalık buğday genotipi (Svevo, Sena, Burgos ve TBT16-9) kullanılmıştır. Bitkiler hızlı ıslah (speed breeding) koşullarının temel esaslarına göre 22 saat ışık 2 saat karanlık koşullardan oluşan uzun fotoperiyot süresine maruz bırakılmış, ardından çiçeklenmeden 20 gün sonra hasat edilmiştir. Hızlı ıslah sürecinde elde edilen tohumlara, dormansi kırma metodu (+4 °C’de bekletme) uygulanması, normal çimlendirme şartlarına kıyasla genotiplerin çimlenme oranında %10.01 artış yapmıştır. Dormansi uygulanmadan %80 çimlenme değeri elde edilmiştir. Erkencilik ve bitki boyunun verim kriterleri ile güçlü ve pozitif ilişkilerde bulunması, bu özelliklerin hızlı ıslah koşullarında geliştirilecek genotiplerin erken generasyonlarında seleksiyon kriteri olarak kullanılabileceğini göstermektedir. Araştırma neticesinde hızlı ıslah (speed breeding) koşullarında yetiştirilen makarnalık buğday genotiplerinden Svevo çeşidi uzun fotoperiyot koşullarına en iyi tepkiyi veren genotip olmuştur.
References
- [1] Çamurcu, H. 2005. Dünya Nüfus Artışı ve Getirdiği Sorunlar. Sosyal Bilimler Dergisi, 8(13), 87-105.
- [2] Ray, D. K., Mueller, N. D., West, P. C., Foley, J. A. 2013. Yield Trends are Insufficient to Double Global Crop Production by 2050. PloSOne, 8, e66428.
- [3] Ghosh, S., Watson, A., Gonzalez-Navarro, O., Ramirez-Gonzalez, R., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P., Hafeez, A., Hayta, S., Melton, R., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., Hickey, L. 2018. Speed Breeding in Growth Chambers and Glasshouses for Crop Breeding and Model Plant Research. Nature Protocols, 13(12), 2944-2963.
- [4] Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Md Hatta, M. A., Hinchliffe, A., Steed, A., Reynolds, D. Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E. Riaz, A., Martin, W. Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., Hickey, L. T. 2018. Speed Breeding is a Powerful Tool to Accelerate Crop Research and Breeding. Nature Plants, 4, 23–29.
- [5] Hickey, L. T., Germán, S. E., Pereyra, S. A., Diaz, J. E., Ziems, L. A., Fowler, R. A., Platz, G. J., Franckowiak, J. D., Dieters, M. J. 2017. Speed Breeding for Multiple Disease Resistance in Barley. Euphytica, 213(3), 1-14.
- [6] Jighly, A., Lin, Z., Pembleton, L. W., Cogan, N., Spangenberg, G. C., Hayes, B. J., Daetwyler, H. D. 2019. Boosting Genetic Gain in Allogamous Crops Via Speed Breeding and Genomic Selection. Frontiers in Plant Science, 10, 1364,
- [7] Li, H., Rasheed, A., Hickey, L. T., He, Z. 2018. Fast-forwarding Genetic Gain. Trends in Plant Science, 23, 184–186.
- [8] O’Connor, D. J., Wright, G. C., Dieters, M. J., George, D. L., Hunter, M. N., Tatnell, J. R., Fleischfresser, D. B. 2013. Development and Application of Speed Breeding Technologies in a Commercial Peanut Breeding Program. Peanut Science, 40(2), 107-114,
- [9] Ahmar, S., Gill, R. A., Jung, K. H., Faheem, A., Qasim, M. U., Mubeen, M., Zhou, W. 2020. Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and future outlook. International Journal of Molecular Science, 21(7), 2590.
- [10] Collard, B. C. Y., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., Verdeprado, H., Raghavan, C., Gregorio, G. B., Vial, L., Demont, M., Biswas, P. S., Iftekharuddaula, K. F., Rahman, K. A., Cobb, J. N., Rafiqul, I. M. 2017. Revisiting Rice Breeding Methods: Evaluating the Use 384 of Rapid Generation Advance (RGA) for Routine Rice Breeding. Plant Production Science, 20, 337–352.
- [11] Jähne, F., Hahn, V., Würschum, T., Leiser, W. L. 2020. Speed Breeding Shortday Crops by LED Controlled Light Schemes. Theoretical and Applied Genetics, 133, 2335–2342,
- [12] Nagatoshi, Y., Fujita, Y. 2019. Accelerating Soybean Breeding in a CO2 Supplemented Growth. Chamber Plant and Cell Physiology, 60, 77–84.
- [13] Alahmad, S., Dinglasan, E., Leung, K., Riaz, A., Derbal, N., Voss-Fels, K., Able, J., Bassi, F., Christopher, J., Hickey, L. 2018. Speed Breeding for Multiple Quantitative Traits in Durum Wheat. Plant Methods, 14(1), 1-15.
- [14] Akdağ, H. 2019. Hızlı ıslah tekniğiyle buğdayda haritalama popülasyonu ve geriye melez döllerin yetiştirilmesi. Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü, Biyomühendislik Anabilim Dalı, Yüksek Lisans Tezi, 51s, Karaman.
- [15] Cazzola, F., Bermejo, C., Julieta, G. I., Cointry, E. 2021. Speed Breeding in Pulses: an Opportunity to İmprove the Efficiency of Breeding Programs. Crop and Pasture Science, 72, 165-172.
[16] Chiurugwi, T., Kemp, S., Powell, W., Hickey, L. T. 2019. Speed Breeding Orphan Crops. Theoretical and Applied Genetics, 132, 607–616.
- [17] Smedley, D., Jacobsen, J. O. B., Jager, M., Kohler, S., Holtgrewe, M., Schubach, M., Washington, N. L. 2015. Next-generation Diagnostics and Disease-gene Discovery with the Exomiser. Nature Protocols, 10(12), 2004-2015.