Research Article
BibTex RIS Cite

Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies

Year 2023, Volume: 27 Issue: 2, 255 - 265, 25.08.2023

Abstract

Alzheimer's disease (AD) is a common type of dementia, which is a progressive brain disorder causing memory, thought and behavioral issues.
Effective therapeutic treatments for AD and/or Dementia have not yet been developed. In this study select transcriptomic datasets were analyzed and disease
proteins that comply with selection criteria were identified. These proteins were then docked with Donepezil, Galantamine, Memantine and Rivastigmine drugs as
well as Thymus cilicius, Melissa officinalis, Salvia sclarea, Linum usitatissimum and Curcuma longa plant actives. Resulting binding energy values for mutant proteins
are significantly different from wild type, especially in MET (MET proto-oncogene, receptor tyrosine kinase) (PDB ID: 3ZXZ). The plant actives showed notable Relative
Stability values when docked with wild type proteins in comparison to drug molecules. To conclude, Alpha-Muurolene, Alpha-Atlantone, Alpha-Cadinene, BetaBourbonene, Beta-Cubebene and Germacrene-D as candidate alternative plant actives have been suggested for these diseases.

References

  • [1] Vatanabe, I. P., Manzine, P. R., Cominetti, M. R. 2020. Historic concepts of dementia and Alzheimer’s disease: From ancient times to the present. Rev Neurol, 176, 140–147.
  • [2] Gale, S. A., Acar, D., Daffner, K. R. 2018. Dementia. Am J Med, 131(10), 1161-1169.
  • [3] Alzheimer’s Disease International, World Health Organization (WHO) Dementia: a public health priority, 2012.
  • [4] Dening, T., Sandilyan, M. B. 2015. Dementia: definitions and types. Nurs Stand, 29, 37–42.
  • [5] Karantzoulis, S., Galvin, J. E. 2011. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother, 1579-1591.
  • [6] Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E. 2011. Alzheimer’s disease. Lancet, 377, 1019–1031.
  • [7] Wang, J., Gu, B. J., Masters, C. L., Wang, Y. J. 2017. A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol, 13, 612-313.
  • [8] Jia, Y., Nie, K., Li, J., Liang, X., Zhang, X. 2016. Identification of therapeutic targets for Alzheimer’s disease via differentially expressed gene and weighted gene co-expression network analyses. Mol Med Rep, 14, 4844–4848.
  • [9] Moradifard, S., Hoseinbeyki, M., Ganji, S. M., Minuchehr, Z. 2018. Analysis of microRNA and Gene Expression Profiles in Alzheimer’s Disease: A Meta-Analysis Approach. Sci. Rep, 8(4767).
  • [10] Howes, M. J. R., Perry, E. 2011. The role of phytochemicals in the treatment and prevention of dementia. Drugs and Aging, 28, 439–468.
  • [11] Rodda, J., Carter, J. 2012. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 344:e2986.
  • [12] Yiannopoulou, K. G., Papageorgiou, S. G. 2013. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord, 6(1), 19-33.
  • [13] Akram, M., Nawaz, A. 2017. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res, 12(4), 660-670.
  • [14] Chen, M., Du, Z. Y., Zheng, X., Li, D. L., Zhou, R. P., Zhang, K. 2018. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res, 13(4), 742-752.
  • [15] Dos Santos-Neto, L. L., De Vilhena Toledo, M. A., Medeiros-Souza, P., De Souza, G. A. 2006. The use of herbal medicine in Alzheimer’s disease - A systematic review. Evidence-Based Complement Altern Med, Volume 3, Article ID 429564.
  • [16] Chang, D., Liu, J., Bilinski, K., Xu, L., Steiner, G. Z., Seto, S. W., Bensoussan, A. 2016. Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-Based Complement Altern Med. Volume 2016, Article ID 7293626.
  • [17] Kindl, M., Blažeković, B., Bucar, F., VladimirKnežević, S. 2015. Antioxidant and anticholinesterase potential of six thymus species. Evidence-Based Complement Altern Med, Volume 2015, Article ID 403950.
  • [18] Dastmalchi, K., Ollilainen, V., Lackman, P., af Gennäs, G. B., Dorman, H. J. D., Järvinen, P. P., YliKauhaluoma, J., Hiltunen, R. 2009. Acetylcholinesterase inhibitory guided fractionation of Melissa officinalis L. Bioorganic Med Chem, 17(2), 867-871.
  • [19] Kennedy, D. O., Pace, S., Haskell, C., Okello, E. J., Milne, A., Scholey, A. B. 2006. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology, 31, 845-852.
  • [20] Teh, S. S., Morlock, G. E. 2015. Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry. Food Chem, 187, 460-468.
  • [21] Meng, X.-Y., Zhang, H.-X., Mezei, M., Cui, M. 2012. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr Comput. Aided-Drug Des, 7(2), 146-157.
  • [22] Náray-Szabó, G. 2019. Biomolecules as Potential Drugs. Curr Protein Pept Sci, (2019). 20(11), 1038-1039.
  • [23] Scotti, L., Scotti, M., 2015. Computer Aided Drug Design Studies in the Discovery of Secondary Metabolites Targeted Against Age-Related Neurodegenerative Diseases. Curr Top Med Chem, 15(21), 2239-2252.
  • [24] Ferreira, E. I. 2019. Drug Design and Development for Neglected Diseases. Curr Med Chem, 26(23), 4298-4300.
  • [25] Pradeepkiran, J. Reddy, P. 2019. Structure Based Design and Molecular Docking Studies for Phosphorylated Tau Inhibitors in Alzheimer’s Disease. Cells, 8(3), 260.
  • [26] Monteiro, A. F. M., De Viana, J. O., Nayarisseri, A., Zondegoumba, E. N., Mendonça Junior, F. J. B., Scotti, M. T., Scotti, L. 2018. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxid Med Cell Longev, Volume 2018, Article ID 7912765.
  • [27] Shamsi, A., Al Shahwan, M., Ahamad, S.,Hassan, M. I., Ahmad, F., Islam, A. 2020. Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: implications of Alzheimer’s drug. J Biomol Struct Dyn, 38 (2020) 1094–1102.
  • [28] Saleh, H., Sadeghi, L. 2019. Investigation of THDOC effects on pathophysiological signs of Alzheimer’s disease as an endogenous neurosteroid: Inhibition of acetylcholinesterase and plaque deposition. Bratislava Med J, 120 (2019) 148–154.
  • [29] Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., Soboleva, A. 2013. NCBI GEO: Archive for functional genomics data sets – Update. Nucleic Acids Res, 41(D1), 991-995.
  • [30] Ihaka, R., Gentleman, R. 1996. R: A Language for Data Analysis and Graphics. J Comput Graph, Stat. 5, 299–314.
  • [31] Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., Smyth, G. K. 2015. Limma powers differential expression analyses for RNAsequencing and microarray studies.Nucleic Acids Res, 43, e47.
  • [32] Huang, D. W., Sherman, B. T., Lempicki, R. A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44–57.
  • [33] Mudunuri, U., Che, A., Yi, M., Stephens, R. M. 2009. bioDBnet: The biological database network. Bioinformatics, 25, 555–556.
  • [34] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. 2000. The Protein Data Bank. Nucleic Acids Res, 28 235–242.
  • [35] U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ http://dx.doi.org/10.15482/USDA.ADC/123927 9
  • [36] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E. E. 2019. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res, 47(D1), 1102- 1009.
  • [37] Allinger, N. L., Yuh, Y. H., Lii, J. H. 1989. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. J Am Chem Soc, 111(23), 8551- 8556.
  • [38] Hockney, R. W., Goel, S. P., Eastwood, J. W. 1974. Quiet high-resolution computer models of a plasma. J Comput Phys, 14, 148–158.
  • [39] Allouche, A. 2012. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem, 32, 174–182.
  • [40] Valentini, G., Maggi, M., Pey, A. L. 2013. Protein stability, folding and misfolding in human PGK1 deficiency. Biomolecules, 3(4), 1030-1052.
  • [41] Hipkiss, A. R. 2019. Aging, Alzheimer’s disease and dysfunctional glycolysis; Similar effects of too much and too little. Aging Dis, 10, 1328–1331.
  • [42] Peng, Y. S., Tang, C. W., Peng, Y. Y., Chang, H., Chen, C. L., Guo, S. L., Wu, L. C., Huang, M. C., Lee, H. C. 2020. Comparative functional genomic analysis of Alzheimer’s affected and naturally aging brains. PeerJ, 8:e8682.
  • [43] Svaasand, E. K., Aasly, J., Landsem, V. M., Klungland, H. 2007. Altered expression of PGK1 in a family with phosphoglycerate kinase deficiency. Muscle and Nerve, 36, 679–684.
  • [44] Zhang, J., Babic, A. 2015. Regulation of the MET oncogene: Molecular mechanisms. Carcinogenesis, 37, 345–355.
  • [45] Hamasaki, H.,Honda, H., Suzuki, S. O., Hokama, M., Kiyohara, Y., Nakabeppu, Y., Iwaki, T. 2014. Down-regulation of MET in hippocampal neurons of Alzheimer’s disease brains. Neuropathology, 34, 284–290.
  • [46] Gant, J. C., Chen, K. C., Kadish, I., Blalock, E. M., Thibault, O., Porter, N. M., Landfield, P. W. 2015. Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. J Neurosci, 35(30), 10878-10887.
  • [47] Clague, M.J., Heride, C., Urbé, S. 2015. The demographics of the ubiquitin system. Trends Cell Biol, 25, 417–426.
  • [48] Kelly, J., Moyeed, R., Carroll, C., Albani, D., Li, X. 2019. Gene expression meta-analysis of Parkinson’s disease and its relationship with Alzheimer’s disease. Mol. Brain, 12(16).
  • [49] Wang, Z., Liu, F., Yu, J. J., Jin, J. Z. 2018. βbourbonene attenuates proliferation and induces apoptosis of prostate cancer cells. Oncol Lett, 16, 4519-4525.
  • [50] Rahali, N., Mehdi, S., Younsi, F., Boussaid, M., Messaoud, C. 2017. Antioxidant, α-amylase, and acetylcholinesterase inhibitory activities of Hertia cheirifolia essential oils: Influence of plant organs and seasonal variation, Int J Food Prop, 20:sup2, 1637-1651.
  • [51] Da Silva, E. B. P., Matsuo, A. L., Figueiredo, C. R., Chaves, M.H., Sartorelli, P., Lago, J. H. G. 2013. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat Prod Commun, 8(2), 277-279.
  • [52] Loizzo, M. R., Ben Jemia, M., Senatore, F., Bruno, M., Menichini, F., Tundis, R. 2013. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem Toxicol, 2013:974256.
  • [53] Mawa, S., Husain, K., Jantan, I. 2013. Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities. Evidence-Based Complement. Altern Med, Article ID 974256.
  • [54] Braga, M. E. M., Leal, P. F., Carvalho, J. E., Meireles, M. A. A. 2003. Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longa L.) Extracts Obtained Using Various Techniques. J Agric Food Chem, 51(22), 6604- 6611

Demans ve Alzheimer Hastalığı Proteinlerine Yönelik Aday Alternatif Bitki Aktiflerinin Kenetlenme Çalışmaları ile Belirlenmesi

Year 2023, Volume: 27 Issue: 2, 255 - 265, 25.08.2023

Abstract

Alzheimer hastalığı (AD), hafıza, düşünce ve davranış sorunlarına neden olan ilerleyici bir beyin bozukluğu olan yaygın bir demans türüdür. AD ve/veya Demans
için etkili terapötik tedaviler henüz geliştirilememiştir. Bu çalışmada, bazı transkriptomik veri kümeleri analiz edilmiş ve seçim kriterlerine uyan hastalık
proteinleri belirlenmiştir. Bu proteinler Donepezil, Galantamine, Memantine ve Rivastigmine ilaçlarının yanı sıra Thymus cilicius, Melissa officinalis, Salvia sclarea,
Linum usitatissimum ve Curcuma longa bitki aktifleri ile kenetlenmiştir. Mutant proteinler için ortaya çıkan bağlanma enerjisi değerleri, özellikle MET'de (MET
proto-onkogen, reseptör tirozin kinaz) (PDB ID: 3ZXZ) olmak üzere, vahşi tipten önemli ölçüde farklıdır. Bitki aktif maddeleri, ilaç molekülleri ile karşılaştırıldığında
vahşi tip proteinlerle kenetlendiğinde dikkate değer Göreceli Stabilite değerleri göstermiştir. Sonuç olarak, bu hastalıklar için Alpha-Muurolene, Alpha-Atlantone,
Alpha-Cadinene, Beta-Bourbonene, Beta-Cubebene ve Germacrene-D aday alternatif bitki aktif maddeleri olarak önerilmiştir.

References

  • [1] Vatanabe, I. P., Manzine, P. R., Cominetti, M. R. 2020. Historic concepts of dementia and Alzheimer’s disease: From ancient times to the present. Rev Neurol, 176, 140–147.
  • [2] Gale, S. A., Acar, D., Daffner, K. R. 2018. Dementia. Am J Med, 131(10), 1161-1169.
  • [3] Alzheimer’s Disease International, World Health Organization (WHO) Dementia: a public health priority, 2012.
  • [4] Dening, T., Sandilyan, M. B. 2015. Dementia: definitions and types. Nurs Stand, 29, 37–42.
  • [5] Karantzoulis, S., Galvin, J. E. 2011. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother, 1579-1591.
  • [6] Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E. 2011. Alzheimer’s disease. Lancet, 377, 1019–1031.
  • [7] Wang, J., Gu, B. J., Masters, C. L., Wang, Y. J. 2017. A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol, 13, 612-313.
  • [8] Jia, Y., Nie, K., Li, J., Liang, X., Zhang, X. 2016. Identification of therapeutic targets for Alzheimer’s disease via differentially expressed gene and weighted gene co-expression network analyses. Mol Med Rep, 14, 4844–4848.
  • [9] Moradifard, S., Hoseinbeyki, M., Ganji, S. M., Minuchehr, Z. 2018. Analysis of microRNA and Gene Expression Profiles in Alzheimer’s Disease: A Meta-Analysis Approach. Sci. Rep, 8(4767).
  • [10] Howes, M. J. R., Perry, E. 2011. The role of phytochemicals in the treatment and prevention of dementia. Drugs and Aging, 28, 439–468.
  • [11] Rodda, J., Carter, J. 2012. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 344:e2986.
  • [12] Yiannopoulou, K. G., Papageorgiou, S. G. 2013. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord, 6(1), 19-33.
  • [13] Akram, M., Nawaz, A. 2017. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res, 12(4), 660-670.
  • [14] Chen, M., Du, Z. Y., Zheng, X., Li, D. L., Zhou, R. P., Zhang, K. 2018. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res, 13(4), 742-752.
  • [15] Dos Santos-Neto, L. L., De Vilhena Toledo, M. A., Medeiros-Souza, P., De Souza, G. A. 2006. The use of herbal medicine in Alzheimer’s disease - A systematic review. Evidence-Based Complement Altern Med, Volume 3, Article ID 429564.
  • [16] Chang, D., Liu, J., Bilinski, K., Xu, L., Steiner, G. Z., Seto, S. W., Bensoussan, A. 2016. Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-Based Complement Altern Med. Volume 2016, Article ID 7293626.
  • [17] Kindl, M., Blažeković, B., Bucar, F., VladimirKnežević, S. 2015. Antioxidant and anticholinesterase potential of six thymus species. Evidence-Based Complement Altern Med, Volume 2015, Article ID 403950.
  • [18] Dastmalchi, K., Ollilainen, V., Lackman, P., af Gennäs, G. B., Dorman, H. J. D., Järvinen, P. P., YliKauhaluoma, J., Hiltunen, R. 2009. Acetylcholinesterase inhibitory guided fractionation of Melissa officinalis L. Bioorganic Med Chem, 17(2), 867-871.
  • [19] Kennedy, D. O., Pace, S., Haskell, C., Okello, E. J., Milne, A., Scholey, A. B. 2006. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology, 31, 845-852.
  • [20] Teh, S. S., Morlock, G. E. 2015. Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry. Food Chem, 187, 460-468.
  • [21] Meng, X.-Y., Zhang, H.-X., Mezei, M., Cui, M. 2012. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr Comput. Aided-Drug Des, 7(2), 146-157.
  • [22] Náray-Szabó, G. 2019. Biomolecules as Potential Drugs. Curr Protein Pept Sci, (2019). 20(11), 1038-1039.
  • [23] Scotti, L., Scotti, M., 2015. Computer Aided Drug Design Studies in the Discovery of Secondary Metabolites Targeted Against Age-Related Neurodegenerative Diseases. Curr Top Med Chem, 15(21), 2239-2252.
  • [24] Ferreira, E. I. 2019. Drug Design and Development for Neglected Diseases. Curr Med Chem, 26(23), 4298-4300.
  • [25] Pradeepkiran, J. Reddy, P. 2019. Structure Based Design and Molecular Docking Studies for Phosphorylated Tau Inhibitors in Alzheimer’s Disease. Cells, 8(3), 260.
  • [26] Monteiro, A. F. M., De Viana, J. O., Nayarisseri, A., Zondegoumba, E. N., Mendonça Junior, F. J. B., Scotti, M. T., Scotti, L. 2018. Computational studies applied to flavonoids against Alzheimer’s and Parkinson’s diseases. Oxid Med Cell Longev, Volume 2018, Article ID 7912765.
  • [27] Shamsi, A., Al Shahwan, M., Ahamad, S.,Hassan, M. I., Ahmad, F., Islam, A. 2020. Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: implications of Alzheimer’s drug. J Biomol Struct Dyn, 38 (2020) 1094–1102.
  • [28] Saleh, H., Sadeghi, L. 2019. Investigation of THDOC effects on pathophysiological signs of Alzheimer’s disease as an endogenous neurosteroid: Inhibition of acetylcholinesterase and plaque deposition. Bratislava Med J, 120 (2019) 148–154.
  • [29] Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., Soboleva, A. 2013. NCBI GEO: Archive for functional genomics data sets – Update. Nucleic Acids Res, 41(D1), 991-995.
  • [30] Ihaka, R., Gentleman, R. 1996. R: A Language for Data Analysis and Graphics. J Comput Graph, Stat. 5, 299–314.
  • [31] Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., Smyth, G. K. 2015. Limma powers differential expression analyses for RNAsequencing and microarray studies.Nucleic Acids Res, 43, e47.
  • [32] Huang, D. W., Sherman, B. T., Lempicki, R. A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44–57.
  • [33] Mudunuri, U., Che, A., Yi, M., Stephens, R. M. 2009. bioDBnet: The biological database network. Bioinformatics, 25, 555–556.
  • [34] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. 2000. The Protein Data Bank. Nucleic Acids Res, 28 235–242.
  • [35] U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ http://dx.doi.org/10.15482/USDA.ADC/123927 9
  • [36] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E. E. 2019. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res, 47(D1), 1102- 1009.
  • [37] Allinger, N. L., Yuh, Y. H., Lii, J. H. 1989. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. J Am Chem Soc, 111(23), 8551- 8556.
  • [38] Hockney, R. W., Goel, S. P., Eastwood, J. W. 1974. Quiet high-resolution computer models of a plasma. J Comput Phys, 14, 148–158.
  • [39] Allouche, A. 2012. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem, 32, 174–182.
  • [40] Valentini, G., Maggi, M., Pey, A. L. 2013. Protein stability, folding and misfolding in human PGK1 deficiency. Biomolecules, 3(4), 1030-1052.
  • [41] Hipkiss, A. R. 2019. Aging, Alzheimer’s disease and dysfunctional glycolysis; Similar effects of too much and too little. Aging Dis, 10, 1328–1331.
  • [42] Peng, Y. S., Tang, C. W., Peng, Y. Y., Chang, H., Chen, C. L., Guo, S. L., Wu, L. C., Huang, M. C., Lee, H. C. 2020. Comparative functional genomic analysis of Alzheimer’s affected and naturally aging brains. PeerJ, 8:e8682.
  • [43] Svaasand, E. K., Aasly, J., Landsem, V. M., Klungland, H. 2007. Altered expression of PGK1 in a family with phosphoglycerate kinase deficiency. Muscle and Nerve, 36, 679–684.
  • [44] Zhang, J., Babic, A. 2015. Regulation of the MET oncogene: Molecular mechanisms. Carcinogenesis, 37, 345–355.
  • [45] Hamasaki, H.,Honda, H., Suzuki, S. O., Hokama, M., Kiyohara, Y., Nakabeppu, Y., Iwaki, T. 2014. Down-regulation of MET in hippocampal neurons of Alzheimer’s disease brains. Neuropathology, 34, 284–290.
  • [46] Gant, J. C., Chen, K. C., Kadish, I., Blalock, E. M., Thibault, O., Porter, N. M., Landfield, P. W. 2015. Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. J Neurosci, 35(30), 10878-10887.
  • [47] Clague, M.J., Heride, C., Urbé, S. 2015. The demographics of the ubiquitin system. Trends Cell Biol, 25, 417–426.
  • [48] Kelly, J., Moyeed, R., Carroll, C., Albani, D., Li, X. 2019. Gene expression meta-analysis of Parkinson’s disease and its relationship with Alzheimer’s disease. Mol. Brain, 12(16).
  • [49] Wang, Z., Liu, F., Yu, J. J., Jin, J. Z. 2018. βbourbonene attenuates proliferation and induces apoptosis of prostate cancer cells. Oncol Lett, 16, 4519-4525.
  • [50] Rahali, N., Mehdi, S., Younsi, F., Boussaid, M., Messaoud, C. 2017. Antioxidant, α-amylase, and acetylcholinesterase inhibitory activities of Hertia cheirifolia essential oils: Influence of plant organs and seasonal variation, Int J Food Prop, 20:sup2, 1637-1651.
  • [51] Da Silva, E. B. P., Matsuo, A. L., Figueiredo, C. R., Chaves, M.H., Sartorelli, P., Lago, J. H. G. 2013. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat Prod Commun, 8(2), 277-279.
  • [52] Loizzo, M. R., Ben Jemia, M., Senatore, F., Bruno, M., Menichini, F., Tundis, R. 2013. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem Toxicol, 2013:974256.
  • [53] Mawa, S., Husain, K., Jantan, I. 2013. Ficus carica L. (Moraceae): Phytochemistry, traditional uses and biological activities. Evidence-Based Complement. Altern Med, Article ID 974256.
  • [54] Braga, M. E. M., Leal, P. F., Carvalho, J. E., Meireles, M. A. A. 2003. Comparison of Yield, Composition, and Antioxidant Activity of Turmeric (Curcuma longa L.) Extracts Obtained Using Various Techniques. J Agric Food Chem, 51(22), 6604- 6611
There are 54 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Tuba Sevimoğlu 0000-0003-4563-3154

Vildan Atalay 0000-0002-9830-9158

Ayşenur Öztürk 0000-0003-0619-3643

Publication Date August 25, 2023
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

APA Sevimoğlu, T., Atalay, V., & Öztürk, A. (2023). Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 255-265. https://doi.org/10.19113/sdufenbed.1213583
AMA Sevimoğlu T, Atalay V, Öztürk A. Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies. J. Nat. Appl. Sci. August 2023;27(2):255-265. doi:10.19113/sdufenbed.1213583
Chicago Sevimoğlu, Tuba, Vildan Atalay, and Ayşenur Öztürk. “Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 2 (August 2023): 255-65. https://doi.org/10.19113/sdufenbed.1213583.
EndNote Sevimoğlu T, Atalay V, Öztürk A (August 1, 2023) Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 255–265.
IEEE T. Sevimoğlu, V. Atalay, and A. Öztürk, “Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies”, J. Nat. Appl. Sci., vol. 27, no. 2, pp. 255–265, 2023, doi: 10.19113/sdufenbed.1213583.
ISNAD Sevimoğlu, Tuba et al. “Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (August 2023), 255-265. https://doi.org/10.19113/sdufenbed.1213583.
JAMA Sevimoğlu T, Atalay V, Öztürk A. Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies. J. Nat. Appl. Sci. 2023;27:255–265.
MLA Sevimoğlu, Tuba et al. “Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, 2023, pp. 255-6, doi:10.19113/sdufenbed.1213583.
Vancouver Sevimoğlu T, Atalay V, Öztürk A. Determination of Candidate Alternative Plant Actives for Dementia and Alzheimer’s Disease Proteins through Docking Studies. J. Nat. Appl. Sci. 2023;27(2):255-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.