Kükürt Polimer Betonların Basınç Dayanımı ve Elastisite Modülüİlişkisinin Yönetmelikler Açısından Karşılaştırılması
Year 2023,
Volume: 27 Issue: 3, 387 - 397, 25.12.2023
Onur Öztürk
,
Adnan Öner
,
Murat Karadeniz
Abstract
Üstün mekanik ve durabilite özellikleri ile kükürt polimer betonlar (KPB)
geleneksel Portland çimento betonlarına (PÇB) alternatif yapı malzemesi olarak son
yıllarda ön plana çıkmıştır. Betonun önemli bir tasarım parametresi olan elastisite
modülü ile ilgili araştırmaların KPB’ler açısından literatürde yetersiz olduğu ve
standartlarda önerilen tahmin modellerinde halen göz önünde bulundurulmadığı
görülmektedir. Bundan dolayı bu çalışma kapsamında, KPB’lerin basınç dayanımıelastisite modülü ilişkisinin uluslararası standartlarca önerilmiş olan analitik
modeller ve geleneksel PÇB’ler ile karşılaştırmalı olarak incelenmesi amaçlanmıştır.
Deneysel çalışma sonucunda KBP’lerin elastisite modüllerinin, benzer basınç
dayanımı değerlerine sahip PÇB’lere göre daha düşük değerlerde kaldığı
belirlenmiştir. PÇB’ler için standartlarda önerilmiş olan analitik modellerin
KPB’lerin elastisite modülleri tahmininde ACI 363R-92 ve NS 3473 standartları
haricinde yaklaşık değerler elde edilemediği görülmüştür. Deneysel çalışmadaki
veriler kullanılarak bu çalışma kapsamında yeni bir analitik model önerilmiştir.
Önerilen analitik model, yakın sonuç veren standartlardaki modeller ile istatistiki
olarak karşılaştırmalı incelenmiş ve önerilen modelin deneysel değerlere en yakın
sonuçları verdiği belirlenmiştir
References
- [1] Miller, S.A., Moore F.C. 2020. Climate and health
damages from global concrete production. Nature
Climate Change, 10, 439-443.
- [2] Ghasemi S., Nikudel M.R., Zalooli A., Khamehchiyan
M., Alizadeh A., Yousefvand F., Ghasemi A.M.R.
2022. Durability Assessment of Sulfur Concrete
and Portland Concrete in Laboratory Conditions
and Marine Environments. Journal of Materials
Civil Engineering, 34(8), 1-14.
- [3] Kurad R., Silvestre J.D., Brito J., Ahmed H. 2017.
Effect of incorporation of high volume of recycled
concrete aggregates and fly ash on the strength and
global warming potential of concrete. Journal of
Cleaner Production, 166, 485-502.
- [4] Kartam N., Al-Mutairi N., Al-Ghusain I., Al- Humoud
J. 2004. Environmental management of
construction and demolition waste in Kuwait.
Waste Management, 24, 1049-1059.
- [5] Mehta P.K. 2009. Global concrete industry
sustainability. Concrete International, 31(2), 45-
48.
- [6] Wagenfeld J.G., Khalid A.A., Almheiri S., Slavens
A.F., Calvet N. 2019. Sustainable Applications
Utilizing Sulfur, A By-Product from Oil and Gas
Industry: A State of the Art Review. Waste
Management, 95, 78-89.
- [7] Bacon R.F., Davis H.S. 1921. Recent Advances in the
American Sulfur Industry, Chemical and
Metallurgical Engineering, 24, 65-72.
- [8] Mohamed A.M.O., El Gamal M.M. 2009. HydroMechanical Behavior of a Newly Developed Sulfur
Polymer Concrete. Cement & Concrete Composites,
31, 186-194.
- [9] You X. 2021. Research progress of the modification
in sulfur concrete. Materials Sciences and
Applications, 12, 353-361.
- [10]Öztürk O. 2019. Kükürt ve Kükürt Polimer
Betonların Mekanik ve Dayanıklılık Özelliklerinin
İncelenmesi. Kocaeli Üniversitesi, Fen Bilimleri
Enstitüsü, Doktora Tezi, 232s, Kocaeli.
- [11]Öztürk O., Öner A. 2020. Investigation of Long
Term Mechanical Properties of Sulphur Polymer
Concrete and Comparison with Portland Cement
Concrete. Erzincan University Journal of Science
and Technology, 13(3), 1252-1262.
- [12]Hager I., Golonka A., Putanowicz R. 2016. 3D
Printing of Buildings and Building Components as
the Future of Sustainable Construction. Procedia
Engineering, 151, 292-299.
- [13]Al-Otaibi S., Al-Aibani A., Al-Bahar S., Abdulsalam
M., Al-Fadala S. 2018. Potential for Producing
Concrete Blocks Using Sulphur PolymericConcrete
in Kuwait. Journal of King Saud UniversityEngineering Sciences, 31(4), 327-331.
- [14]Shin M., Kim K., Gwon S.W., Cha S. 2014. Durability
of Sustainable Sulfur Concrete with Fly Ash and
Recycled Aggregate Against Chemical and
Weathering Environments. Construction and
Building Materials, 69, 167-176.
- [15]Yang C., Lv X., Tian X., Wang Y., Komarneni S. 2014.
An Investigation on the Use of Electrolytic
Manganese Residue as Filler in Sulfur Concrete.
Construction and Building Materials, 73, 305-310.
- [16]Contreras M., Gazquez M.J., Garcia-Diaz I., Alguacil
F.J., Lopez F.A., Bolivar J.P. 2013. Valorization of
Waste Ilmenite Mud in the Manufacture of Sulphur
Polymer Cement. Journal of Environmental
Management, 128, 625-630.
- [17]Mohammadi A., Dehastani M., Asce A.M.,
Shooshpasha I., Asadollahi S. 2014. Mechanical
Properties of Sandy Soil Stabilized with Modified
Sulfur. Journal of Materials in Civil Engineering,
27(4), 1-7.
- [18]Karadeniz M., Öztürk O., Kara Z.E., Opan M. 2022.
Düşük basınçlı kükürt enjeksiyonunun serbest
basınç mukavemetine etkisi. Kırklareli University
Journal of Engineering and Science, 8(2), 322-342.
- [19]Türkel E.B. 2002. Betonda Basınç Dayanımı ile
Elastisite Modülü Arasındaki İlişkiler. İstanbul
Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
Yüksek Lisans Tezi, 79s, İstanbul.
- [20]Öztürk O., Öner A. 2022. Long-term Durability of
Bitumen Modified Sulfur Polymer Concrete Under
Freeze–Thaw Cycles. Int J Civ Eng, 20, 529–543.
- [21]ASTM C-469, 2014. Standard Test Method for Static
Modulus of Elasticity and Poisson’s Ratio of
Concrete in Compression. American Society for
Testing and Materials, Pennsylvania.
- [22]Tangüner R. 2007. Uçucu Küllü Düşük ve Yüksek
Mukavemetli Betonların Elastiklik Modülünün
İncelenmesi. İstanbul Teknik Üniversitesi, Fen
Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75s,
İstanbul.
- [23]Vakhshhouri B., Nejadi S. 2019. Empirical models
and design codes in prediction of modulus of
elasticity of concrete. Front Struct Civ Eng, 13(1),
38-48.
- [24]TS 500, 2000. Betonarme Yapıların Hesap ve
Yapım Kuralları, Türk Standartları Enstitüsü,
Ankara.
- [25]ACI 363R-92,1984. Materials and General
Properties of Concrete, ACI Manual of Concrete
Practice Part 1, Michigan.
- [26]CEB-FIB, 1993. CEB-FIB Model Code for Concrete
Structures, Committee Euro-International du
Beton, Michigan.
- [27]NS 3473, 2003. Concrete Structures - Design and
Detailing Rules, Norwegian Standards, Norway.
- [28]EN 1992-1-1, 2004. Eurocode 2: Design of Concrete
Structures-Part 1-1: General Rules and Rules for
Buildings, European Committee for
Standardization, Brussels.
- [29]BS 5400-4, 1990. Steel, concrete and composite
bridges, Part 4: Code of practice for design of
concrete bridges, British Standard, UK.
- [30]VBC, 1995. Voorschriften Beton TGB 1990,
Constructieve Eisen en Rekenmethoden,
Nederlandse.
- [31]SP-52-101, 2003. Concrete and reinforced
concrete structures without prestressing, In
Gosstroi of Russia, Moscow.
- [32]Yazıcı Ş., İnan Sezer G. 2007. The effect of
cylindrical specimen size on the compressive
strength of concrete. Building and Environment,
42, 2417-2420.
- [33]Hammons M.I., Simith D.M., Wilson D.E., Reece C.S.
1993. Investigation of Modified Sulfur Concrete as
a Structural Material. Construction Productivity
Advancement Research (CPAR) Program-Final
Report, CPAR-SL-93-1
Comparison of Design Guidelines for Relationship of Sulfur Polymer Concrete Compressive Strength and Modulus of Elasticity
Year 2023,
Volume: 27 Issue: 3, 387 - 397, 25.12.2023
Onur Öztürk
,
Adnan Öner
,
Murat Karadeniz
Abstract
Sulfur polymer concrete (SPC) with its superior mechanical and
durability properties has come to the fore in recent years as an alternative
construction material to traditional Portland cement concrete (PCC). It is seen that
the studies on the modulus of elasticity, which is an important design parameter of
concrete, are insufficient in the literature for SPC and are still not considered in the
prediction models suggested in the standards. This study aims to examine the
compressive strength-modulus of elasticity relationship of SPC comparatively with
analytical models proposed by international standards and traditional PPC. As a
result of the experimental study, it was determined that the modulus of elasticity of
SPC remained at lower values than PCC with similar compressive strength values. It
was observed that the analytical models proposed in the standards for PCC could
not obtain approximate values for the estimation of the modulus of elasticity of SPC,
except for the ACI 363R-92 and NS 3473 standards. A new analytical model was
proposed using the experimental data within the scope of this study. The proposed
analytical model was statistically compared with the models in the standards that
gave close results, and it was determined that the proposed model gave the closest
results to the experimental values.
References
- [1] Miller, S.A., Moore F.C. 2020. Climate and health
damages from global concrete production. Nature
Climate Change, 10, 439-443.
- [2] Ghasemi S., Nikudel M.R., Zalooli A., Khamehchiyan
M., Alizadeh A., Yousefvand F., Ghasemi A.M.R.
2022. Durability Assessment of Sulfur Concrete
and Portland Concrete in Laboratory Conditions
and Marine Environments. Journal of Materials
Civil Engineering, 34(8), 1-14.
- [3] Kurad R., Silvestre J.D., Brito J., Ahmed H. 2017.
Effect of incorporation of high volume of recycled
concrete aggregates and fly ash on the strength and
global warming potential of concrete. Journal of
Cleaner Production, 166, 485-502.
- [4] Kartam N., Al-Mutairi N., Al-Ghusain I., Al- Humoud
J. 2004. Environmental management of
construction and demolition waste in Kuwait.
Waste Management, 24, 1049-1059.
- [5] Mehta P.K. 2009. Global concrete industry
sustainability. Concrete International, 31(2), 45-
48.
- [6] Wagenfeld J.G., Khalid A.A., Almheiri S., Slavens
A.F., Calvet N. 2019. Sustainable Applications
Utilizing Sulfur, A By-Product from Oil and Gas
Industry: A State of the Art Review. Waste
Management, 95, 78-89.
- [7] Bacon R.F., Davis H.S. 1921. Recent Advances in the
American Sulfur Industry, Chemical and
Metallurgical Engineering, 24, 65-72.
- [8] Mohamed A.M.O., El Gamal M.M. 2009. HydroMechanical Behavior of a Newly Developed Sulfur
Polymer Concrete. Cement & Concrete Composites,
31, 186-194.
- [9] You X. 2021. Research progress of the modification
in sulfur concrete. Materials Sciences and
Applications, 12, 353-361.
- [10]Öztürk O. 2019. Kükürt ve Kükürt Polimer
Betonların Mekanik ve Dayanıklılık Özelliklerinin
İncelenmesi. Kocaeli Üniversitesi, Fen Bilimleri
Enstitüsü, Doktora Tezi, 232s, Kocaeli.
- [11]Öztürk O., Öner A. 2020. Investigation of Long
Term Mechanical Properties of Sulphur Polymer
Concrete and Comparison with Portland Cement
Concrete. Erzincan University Journal of Science
and Technology, 13(3), 1252-1262.
- [12]Hager I., Golonka A., Putanowicz R. 2016. 3D
Printing of Buildings and Building Components as
the Future of Sustainable Construction. Procedia
Engineering, 151, 292-299.
- [13]Al-Otaibi S., Al-Aibani A., Al-Bahar S., Abdulsalam
M., Al-Fadala S. 2018. Potential for Producing
Concrete Blocks Using Sulphur PolymericConcrete
in Kuwait. Journal of King Saud UniversityEngineering Sciences, 31(4), 327-331.
- [14]Shin M., Kim K., Gwon S.W., Cha S. 2014. Durability
of Sustainable Sulfur Concrete with Fly Ash and
Recycled Aggregate Against Chemical and
Weathering Environments. Construction and
Building Materials, 69, 167-176.
- [15]Yang C., Lv X., Tian X., Wang Y., Komarneni S. 2014.
An Investigation on the Use of Electrolytic
Manganese Residue as Filler in Sulfur Concrete.
Construction and Building Materials, 73, 305-310.
- [16]Contreras M., Gazquez M.J., Garcia-Diaz I., Alguacil
F.J., Lopez F.A., Bolivar J.P. 2013. Valorization of
Waste Ilmenite Mud in the Manufacture of Sulphur
Polymer Cement. Journal of Environmental
Management, 128, 625-630.
- [17]Mohammadi A., Dehastani M., Asce A.M.,
Shooshpasha I., Asadollahi S. 2014. Mechanical
Properties of Sandy Soil Stabilized with Modified
Sulfur. Journal of Materials in Civil Engineering,
27(4), 1-7.
- [18]Karadeniz M., Öztürk O., Kara Z.E., Opan M. 2022.
Düşük basınçlı kükürt enjeksiyonunun serbest
basınç mukavemetine etkisi. Kırklareli University
Journal of Engineering and Science, 8(2), 322-342.
- [19]Türkel E.B. 2002. Betonda Basınç Dayanımı ile
Elastisite Modülü Arasındaki İlişkiler. İstanbul
Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
Yüksek Lisans Tezi, 79s, İstanbul.
- [20]Öztürk O., Öner A. 2022. Long-term Durability of
Bitumen Modified Sulfur Polymer Concrete Under
Freeze–Thaw Cycles. Int J Civ Eng, 20, 529–543.
- [21]ASTM C-469, 2014. Standard Test Method for Static
Modulus of Elasticity and Poisson’s Ratio of
Concrete in Compression. American Society for
Testing and Materials, Pennsylvania.
- [22]Tangüner R. 2007. Uçucu Küllü Düşük ve Yüksek
Mukavemetli Betonların Elastiklik Modülünün
İncelenmesi. İstanbul Teknik Üniversitesi, Fen
Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75s,
İstanbul.
- [23]Vakhshhouri B., Nejadi S. 2019. Empirical models
and design codes in prediction of modulus of
elasticity of concrete. Front Struct Civ Eng, 13(1),
38-48.
- [24]TS 500, 2000. Betonarme Yapıların Hesap ve
Yapım Kuralları, Türk Standartları Enstitüsü,
Ankara.
- [25]ACI 363R-92,1984. Materials and General
Properties of Concrete, ACI Manual of Concrete
Practice Part 1, Michigan.
- [26]CEB-FIB, 1993. CEB-FIB Model Code for Concrete
Structures, Committee Euro-International du
Beton, Michigan.
- [27]NS 3473, 2003. Concrete Structures - Design and
Detailing Rules, Norwegian Standards, Norway.
- [28]EN 1992-1-1, 2004. Eurocode 2: Design of Concrete
Structures-Part 1-1: General Rules and Rules for
Buildings, European Committee for
Standardization, Brussels.
- [29]BS 5400-4, 1990. Steel, concrete and composite
bridges, Part 4: Code of practice for design of
concrete bridges, British Standard, UK.
- [30]VBC, 1995. Voorschriften Beton TGB 1990,
Constructieve Eisen en Rekenmethoden,
Nederlandse.
- [31]SP-52-101, 2003. Concrete and reinforced
concrete structures without prestressing, In
Gosstroi of Russia, Moscow.
- [32]Yazıcı Ş., İnan Sezer G. 2007. The effect of
cylindrical specimen size on the compressive
strength of concrete. Building and Environment,
42, 2417-2420.
- [33]Hammons M.I., Simith D.M., Wilson D.E., Reece C.S.
1993. Investigation of Modified Sulfur Concrete as
a Structural Material. Construction Productivity
Advancement Research (CPAR) Program-Final
Report, CPAR-SL-93-1