Research Article
BibTex RIS Cite

Investigation of Electrical and Optical Properties of Chitosan Films Containing Different Carbon Fillers

Year 2023, Volume: 27 Issue: 3, 485 - 494, 25.12.2023

Abstract

In this study, the changes in the electrical and optical properties of thin
films obtained by adding carbon fillers (CFs) such as graphene oxide (GO), carbon
mesoporous (CM), graphene nanoplatelet (GNP) and multi-walled carbon nanotube
(MWCNT) into the chitosan (CS) matrix were investigated. Solution mixing,
ultrasonic mixing and spin coating techniques were used to prepare the films.
Significant improvements were observed in the electrical and optical properties of
CS/CF bio-composite thin films. In addition, a comparison was made between these
CFs and it was observed that MWCNT was more effective than others in increasing
physical properties. Obtained electrical and optical results show that CS/CF biocomposite films can be used in sustainable and temporary optoelectronics, photon
energy applications, biomedicine and biosensor applications.

Project Number

2021/91

References

  • [1] Mergen, Ö.B., Arda, E., Evingür, G.A. 2020. Electrical, mechanical, and optical changes in MWCNT-doped PMMA composite films. Journal of Composite Materials, 54(18), 2449–2459.
  • [2] Al-Saleh, M.H., Jawad, S.A. 2016. Graphene Nanoplatelet–Polystyrene Nanocomposite: Dielectric and Charge Storage Behaviors. Journal Of Electronic Materials, 45(7), 3532-3539.
  • [3] Kau, T., Thirugnanam, A., Pramanik, K. 2017. Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering. Materials Today Communications, 12, 34-42.
  • [4] Hussin, N., Ibrahim, M.H., Ahmad, F., Yahaya, H., Harun, S. W. 2017. Graphene Nanoplatelets (GnP)- PVA Based Passive Saturable Absorber. TELKOMNIKA, 15(2), 814-819.
  • [5] Marsden, A.J., Papageorgiou, D.G., Vallés, C., Liscio, A., Palermo, V., Bissett, M.A., Young, R.J., Kinloch, I.A. 2018. Electrical percolation in graphene– polymer composites. 2D Materials. 5, 032003.
  • [6] Wu, G., Huang, T., Huang, J. 2018. UltrasonicAssisted Synthesis and Enhancement of Chitosan/Graphene Nanosheet Composites. Polymer Composites. 39, 4217–4223.
  • [7] Mergen, Ö.B., Arda, E., Evingür, G.A. 2020. Electrical, optical, and mechanical percolations of multi-walled carbon nanotube and carbon mesoporous-doped polystyrene composites. Journal of Composite Materials. 54(1), 31–44.
  • [8] Saladino, M.L., Markowska, M., Carmone, C., Cancemi, P., Alduina, R., Presentato, A., Scaffaro, R., Biały, D., Hasiak, M., Hreniak, D., Wawrzynska, M. 2020. Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials. Materials. 13, 1980.
  • [9] Yadav, M., Rhee, K.Y., Jung, I.H., Park, S.J. 2013. Ecofriendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose. 20, 687–698.
  • [10] Mergen, Ö.B. 2021. Effect of MWCNT addition on the optical band gap of PVA/CS transient biocomposites. Journal of Composite Materials. 55(29), 4347–4359.
  • [11] Mergen, Ö.B. 2021. CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 21(011102), 46-55.
  • [12] Huang, Y., Kormakov, S., He, X., Gao, X., Zheng, X., Liu, Y., Sun, J., Wu, D. 2019. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers. 11, 187.
  • [13] Kara, S., Arda, E., Dolaştır, F., Pekcan, Ö. 2010. Electrical and optical percolations of polystyrene latex–multiwalled carbon nanotube composites. Journal of Colloid and Interface Science. 344, 395– 401.
  • [14] Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey Jr., J. T., Ramasamy, M. S., Sahoo, N. G., Cho, J. W. 2017. Functionalization of carbon nanomaterials for advanced polymernanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science. 67, 1–47.
  • [15] Mergen, Ö.B., Arda, E. 2023. Electrical, optical and dielectric properties of polyvinylpyrrolidone / graphene nanoplatelet nanocomposites. Optical Materials. 139, 113823.
  • [16] Mergen, Ö.B., Arda, E. 2020. Determination of Optical Band Gap Energies of CS/MWCNT Bionanocomposites by Tauc and ASF Methods. Synthetic Metals. 269, 116539.
  • [17] Aziz, S.B. 2017. Morphological and Optical Characteristics of Chitosan(1-x):CuOx (4 ≤ x ≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc’s Model. Nanomaterials .7, 444.
  • [18] Menazea, A.A., Ismail, A.M., Awwad, N.S., Ibrahium, H.A. 2020. Physical characterization and antibacterial activity of PVA / Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. Journal of Materials Research and Technology. 9(5), 9598–9606.
  • [19] Dhatarwal, P., Sengwa, R.J. 2021. Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO) / Al2O3 and (PVP/PEO) / SiO2 nanocomposites Optik 233, 166594.
  • [20] Ahmed, R. M. (2009). Optical study on poly (methyl methacrylate)/poly (vinyl acetate) blends. International Journal of photoenergy, 2009.
  • [21] Veena, G., Lobo, B. 2019. Dispersive parameters of oxidized PVA-PVP blend films. Turkish Journal of Physics. 43, 337–354.
  • [22] Farag, A.A. M., Yahia, I.S., Yakuphanoglu, F., Kandaz, M., Farooq, W. A. 2012. Optical properties and the dispersion parameters of new zinc Phthalocyanine benzofuran derivative prepared by non-vacuum spin coating technique. Optics Communications. 285, 3122–3127.
  • [23] Soni, G., Jangir, R.K. 2021. Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik. 226, 165915

Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi

Year 2023, Volume: 27 Issue: 3, 485 - 494, 25.12.2023

Abstract

Bu çalışmada Kitosan (CS) matris içerisine grafen oksit (GO), gözenekli karbon
(CM), grafen nanoplatelet (GNP) ve çok duvarlı karbon nanotüp (MWCNT) gibi
karbon dolgular (KD’lar) eklenerek elde edilen ince filmlerin elektrik ve optik
özelliklerindeki değişimler incelenmiştir. Filmleri hazırlamak için çözelti
karıştırma, ultrasonik karıştırma ve döndürerek kaplama teknikleri kullanılmıştır.
CS/KD ince filmlerin elektrik ve optik özelliklerinde önemli ölçüde iyileşmeler
sağlandığı görülmüştür. Ayrıca bu KD’lar arsında bir kıyaslama yapılmış ve fiziksel
özellikleri arttırmada MWCNT’ün diğer KD’lara göre daha etkili olduğu
gözlemlenmiştir. Elde edilen elektriksel ve optik sonuçlar, CS/KD biyokompozitlerin sürdürülebilir ve geçici optoelektronik, foton enerjisi uygulamaları,
biyotıp ve biyosensör uygulamalarında kullanılabileceğini göstermektedir.

Supporting Institution

Trakya Üniversitesi

Project Number

2021/91

Thanks

Bu çalışma Trakya Üniversitesi Bilimsel Araştırma Projeleri birimi (Proje No: TUBAP 2021/91) tarafından desteklenmiştir.

References

  • [1] Mergen, Ö.B., Arda, E., Evingür, G.A. 2020. Electrical, mechanical, and optical changes in MWCNT-doped PMMA composite films. Journal of Composite Materials, 54(18), 2449–2459.
  • [2] Al-Saleh, M.H., Jawad, S.A. 2016. Graphene Nanoplatelet–Polystyrene Nanocomposite: Dielectric and Charge Storage Behaviors. Journal Of Electronic Materials, 45(7), 3532-3539.
  • [3] Kau, T., Thirugnanam, A., Pramanik, K. 2017. Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering. Materials Today Communications, 12, 34-42.
  • [4] Hussin, N., Ibrahim, M.H., Ahmad, F., Yahaya, H., Harun, S. W. 2017. Graphene Nanoplatelets (GnP)- PVA Based Passive Saturable Absorber. TELKOMNIKA, 15(2), 814-819.
  • [5] Marsden, A.J., Papageorgiou, D.G., Vallés, C., Liscio, A., Palermo, V., Bissett, M.A., Young, R.J., Kinloch, I.A. 2018. Electrical percolation in graphene– polymer composites. 2D Materials. 5, 032003.
  • [6] Wu, G., Huang, T., Huang, J. 2018. UltrasonicAssisted Synthesis and Enhancement of Chitosan/Graphene Nanosheet Composites. Polymer Composites. 39, 4217–4223.
  • [7] Mergen, Ö.B., Arda, E., Evingür, G.A. 2020. Electrical, optical, and mechanical percolations of multi-walled carbon nanotube and carbon mesoporous-doped polystyrene composites. Journal of Composite Materials. 54(1), 31–44.
  • [8] Saladino, M.L., Markowska, M., Carmone, C., Cancemi, P., Alduina, R., Presentato, A., Scaffaro, R., Biały, D., Hasiak, M., Hreniak, D., Wawrzynska, M. 2020. Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials. Materials. 13, 1980.
  • [9] Yadav, M., Rhee, K.Y., Jung, I.H., Park, S.J. 2013. Ecofriendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose. 20, 687–698.
  • [10] Mergen, Ö.B. 2021. Effect of MWCNT addition on the optical band gap of PVA/CS transient biocomposites. Journal of Composite Materials. 55(29), 4347–4359.
  • [11] Mergen, Ö.B. 2021. CS/PVA/PVP/GO Hibrit Kompozitlerin Hazırlanması ve Optik Bant Boşluğu Enerjilerinin Belirlenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 21(011102), 46-55.
  • [12] Huang, Y., Kormakov, S., He, X., Gao, X., Zheng, X., Liu, Y., Sun, J., Wu, D. 2019. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers. 11, 187.
  • [13] Kara, S., Arda, E., Dolaştır, F., Pekcan, Ö. 2010. Electrical and optical percolations of polystyrene latex–multiwalled carbon nanotube composites. Journal of Colloid and Interface Science. 344, 395– 401.
  • [14] Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey Jr., J. T., Ramasamy, M. S., Sahoo, N. G., Cho, J. W. 2017. Functionalization of carbon nanomaterials for advanced polymernanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science. 67, 1–47.
  • [15] Mergen, Ö.B., Arda, E. 2023. Electrical, optical and dielectric properties of polyvinylpyrrolidone / graphene nanoplatelet nanocomposites. Optical Materials. 139, 113823.
  • [16] Mergen, Ö.B., Arda, E. 2020. Determination of Optical Band Gap Energies of CS/MWCNT Bionanocomposites by Tauc and ASF Methods. Synthetic Metals. 269, 116539.
  • [17] Aziz, S.B. 2017. Morphological and Optical Characteristics of Chitosan(1-x):CuOx (4 ≤ x ≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc’s Model. Nanomaterials .7, 444.
  • [18] Menazea, A.A., Ismail, A.M., Awwad, N.S., Ibrahium, H.A. 2020. Physical characterization and antibacterial activity of PVA / Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. Journal of Materials Research and Technology. 9(5), 9598–9606.
  • [19] Dhatarwal, P., Sengwa, R.J. 2021. Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO) / Al2O3 and (PVP/PEO) / SiO2 nanocomposites Optik 233, 166594.
  • [20] Ahmed, R. M. (2009). Optical study on poly (methyl methacrylate)/poly (vinyl acetate) blends. International Journal of photoenergy, 2009.
  • [21] Veena, G., Lobo, B. 2019. Dispersive parameters of oxidized PVA-PVP blend films. Turkish Journal of Physics. 43, 337–354.
  • [22] Farag, A.A. M., Yahia, I.S., Yakuphanoglu, F., Kandaz, M., Farooq, W. A. 2012. Optical properties and the dispersion parameters of new zinc Phthalocyanine benzofuran derivative prepared by non-vacuum spin coating technique. Optics Communications. 285, 3122–3127.
  • [23] Soni, G., Jangir, R.K. 2021. Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik. 226, 165915
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Electronic, Optics and Magnetic Materials
Journal Section Makaleler
Authors

Ömer Bahadır Mergen 0000-0002-8829-436X

Project Number 2021/91
Publication Date December 25, 2023
Published in Issue Year 2023 Volume: 27 Issue: 3

Cite

APA Mergen, Ö. B. (2023). Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 485-494. https://doi.org/10.19113/sdufenbed.1311689
AMA Mergen ÖB. Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. December 2023;27(3):485-494. doi:10.19113/sdufenbed.1311689
Chicago Mergen, Ömer Bahadır. “Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik Ve Optik Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 3 (December 2023): 485-94. https://doi.org/10.19113/sdufenbed.1311689.
EndNote Mergen ÖB (December 1, 2023) Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 3 485–494.
IEEE Ö. B. Mergen, “Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi”, J. Nat. Appl. Sci., vol. 27, no. 3, pp. 485–494, 2023, doi: 10.19113/sdufenbed.1311689.
ISNAD Mergen, Ömer Bahadır. “Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik Ve Optik Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/3 (December 2023), 485-494. https://doi.org/10.19113/sdufenbed.1311689.
JAMA Mergen ÖB. Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. 2023;27:485–494.
MLA Mergen, Ömer Bahadır. “Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik Ve Optik Özelliklerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 3, 2023, pp. 485-94, doi:10.19113/sdufenbed.1311689.
Vancouver Mergen ÖB. Farklı Karbon Dolgular İçeren Kitosan Filmlerin Elektrik ve Optik Özelliklerinin İncelenmesi. J. Nat. Appl. Sci. 2023;27(3):485-94.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.