Research Article
BibTex RIS Cite

Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile

Year 2025, Volume: 29 Issue: 2, 327 - 334, 25.08.2025

Abstract

Diels Alder reactions are the best method used for the synthesis of various important molecules. In this study, the reaction mechanism between pyrrole and acrylonitrile, which can be an example of these reactions, is explained by DFT. Using the B3LYP method with the 6-31+G(d,p) basis set, chemical hardness, softness, electrophilicity index, electrochemical potential and thermodynamic properties were calculated. When we calculated these properties with solvents such as toluene, the gap between the HOMO and LUMO orbitals of the product formed as a result of the DA reaction was 9.53 eV in the gas phase, while it decreased to 6.49 eV in the toluene solvent environment. In addition, as a result of the calculations; thermodynamic parameters such as enthalpy, entropy and internal energy increased with increasing temperature, but the Gibbs free energy decreased.

References

  • [1] Diels, O., Alder, K. 1928. Synthesen in Der Hydroaromatischen Reihe. Leibigs Ann. Chem. 460, 98−122.
  • [2] Tasdelen, M. A. 2011. Diels−Alder “click” Reactions: Recent Applications in Polymer and Material Science. Polym. Chem. 2, 2133−2145.
  • [3] Heravi, M. M., Ahmadi, T., Ghavidel, M., Heidari, B., Hamidi, H. 2015. Recent Applications of the Hetero Diels−Alder Reaction in the Total Synthesis of Natural Products. RSC Adv. 5, 101999 − 102075.
  • [4] Nicolaou, K. C., Snyder, S. A., Montagnon, T., Vassilikogiannakis, G. 2002. The Diels - Alder Reaction in Total Synthesis. Chem., Int. Ed. 41, 1668.
  • [5] Kappe, C. O., Murphree, S. S., Padwa, A. 1997. Synthetic Applications of Furan Diels-Alder Chemistry. Tetrahedron 53, 14179−14233.
  • [6] Funel, J.-A., Abele, S. 2013. Industrial Applications of the Diels-Alder Reaction. Angew. Chem., Int. Ed. 52, 3822−3863.
  • [7] Peterson, A. M., Jensen, R. E., Palmese, G. R. 2010. Room-Temperature Healing of a Thermosetting Polymer Using the Diels- Alder Reaction. ACS Appl. Mater. Interfaces, 2, 1141−1149.
  • [8] Zeng, C., Seino, H., Ren, J., Hatanaka, K., Yoshie, N. 2013. Bio-Based Furan Polymers with Self-Healing Ability. Macromolecules, 46, 1794−1802.
  • [9] U. Rehman, A. Mansha, M. Zahid, S. Asim, A.F. Zahoor, Z.A. Rehan, 2022. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels-Alder reactions of an antiviral compound 7H-benzo [a] phenalene, Struct. Chem. 1–14.
  • [10] B.S. Bodnar, M.J. Miller, 2011. The nitrosocarbonyl hetero-Diels–Alder reaction as a useful tool for organic syntheses, Angew. Chem. Int. Ed. 50, 5630–5647.
  • [11] D. McLeod, M. K. Thogersen, N. I. Jessen, K. A. Jorgensen, C. S. Jamieson, X.-S. Xue, K. Houk, F. Liu and R. Hoffmann. 2019. Accounts of Chemical Research 52, 3488.
  • [12] J. S. Barber, M. M. Yamano, M. Ramirez, E. R. Darzi, R. R. Knapp, F. Liu, K. Houk, and N. K. Garg, 2018. Nature Chemistry 10, 953.
  • [13] A. N. S. Chauhan, G. Mali, and R. D. Erande, 2022. Asian Journal of Organic Chemistry 11, e202100793.
  • [14] M.-M. Xu, L. Yang, K. Tan, X. Chen, Q.-T. Lu, K. Houk, and Q. Cai, 2021. Nature Catalysis 4, 892.
  • [15] Y. S. Zholdassov, L. Yuan, S. R. Garcia, R. W. Kwok, A. Boscoboinik, D. J. Valles, M. Marianski, A. Martini, R. W. Carpick, and A. B. 2023. Braunschweig, Science 380, 1053.
  • [16] S. Chen, P. Yu, and K. Houk, 2018. Journal of the American Chemical Society 140, 18124.
  • [17] Houk, K. N., Gonzalez, J., Li, Y. 1995. Pericyclic Reaction Transition States: Passions and Punctilios, 1935−1995. Acc. Chem. Res. 28, 81−90.
  • [18] Houk, K. N., Li, Y., Evanseck, J. D. 1992. Transition Structures of Hydrocarbon Pericyclic Reactions. Angew. Chem., Int. Ed. Engl. 31, 682−708.
  • [19] Domingo, L. R., José Aurell, M., Pérez, P., Contreras, R. 2003. Origin of the Synchronicity on the Transition Structures of Polar Diels-AlderReactions. Are These Reactions [4 + 2] Processes? J. Org. Chem., 68, 3884−3890.
  • [20] Xujian Chen, Chengcheng Wei, Min Xie, Yongjun Hu, 2023. Single-Photon Ionization Induced New Covalent Bond Formation in Acrylonitrile(AN)–Pyrrole(Py) Clusters. J. Phys. Chem. A, 127, 40, 8272–8279.
  • [21] Cetiner, S., Kalaoglu, F., Karakas, H. et al. 2011. Characterization of conductive poly(acrylonitrile-co-vinylacetate) composites: Matrix polymerization of pyrrole derivatives. Fibers Polym 12, 151–158.
  • [22] El-Aassar, M.R., Shibraen, M.H.M.A., Abdel-Fattah, Y.R. et al. Functionalization of Electrospun Poly(Acrylonitrile-co-Styrene/Pyrrole) Copolymer Nanofibers for Using as a High-performance Carrier for Laccase Immobilization. Fibers Polym 20, 2268–2279.
  • [23] Gandini, A., Carvalho, A.J.F., Trovatti, E., Kramer, R.K. and Lacerda, T.M. 2018. Eur. J. Lipid Sci. Technol., Macromolecular materials based on the application of the Diels–Alder reaction to natural polymers and plant oils, 120, 1700091.
  • [24] Dutt, G., Ghanty, T. 2003. Rotational dynamics of nondipolar probes in ethanols: How does the strength of the solute-solvent hydrogen bond impede molecular rotation? J. Chem. Phys. 119, 4768–4774.
  • [25] Ali, M., Mansha A., Asim, S., Zahid, M., Usman, Ali, M. N. 2018. DFT study for the spectroscopic and structural analysis of p-dimethylamino azobenzene, J. Spectrosc. 2018, 9365153, 15 pages.
  • [26] Frisch, M.J., Trucks et.al. 2016. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT.
  • [27] C. Barros, P. De Oliveira, F. Jorge, A. Canal Neto, M. Campos, 2010. Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties, Mol. Phys. 108, 1965–1972.
  • [28]Dennington, R. Keith, T., Millam, J. GaussView, Version 6. Semichem Inc., Shawnee Mission, KS, 2016.
  • [29]Jahantigh, F., Ghorashi, S.B., Belverdi, A.R. 2018. A first principle study of benzimidazobenzophenanthrolin and tetraphenyldibenzoperiflanthene to design and construct novel organic solar cells, Phys. B Condens. Matter 542, 32–36.
  • [30]Zheng, S., Geva, E., Dunietz, B.D. 2013. Solvated charge transfer states of functionalized anthracene and tetracyanoethylene dimers: a computational study based on a range separated hybrid functional and charge constrained self-consistent field with switching Gaussian polarized continuum models, J. Chem. Theory Comput. 9, 1125–1131.
  • [31] Hussain, R., Saeed, M., Mehboob, M.Y., Khan, S.U., Khan, M.U., Adnan, M., Ahmed, Iqbal, M. J., Ayub, K.J.R. 2020. Density functional theory study of palladium cluster adsorption on a graphene support, 10, 20595-20607.
  • [32]B. Champagne, E.A. Perp`ete, D. Jacquemin, S.J. Van Gisbergen, E.-J. Baerends, C. Soubra-Ghaoui, K.A. Robins, B. Kirtman. 2000. Assessment of conventional density functional schemes for computing the dipole moment and (hyper) polarizabilities of push− pull π-conjugated systems, Chem. A Eur. J. 104 4755–4763.
  • [33] Best, R.B., Hummer, G. 2005. Reaction coordinates and rates from transition paths, Proceedings of the National Academy of Sciences, 102, 6732-6737.
  • [34] Ren, S.-J., Wang, C.-P., Xiao, Y., Deng, J. Tian, Y., Song, J-J., Cheng, X.-J., Sun, G.-F. 2020. Thermal properties of coal during low temperature oxidation using a grey correlation method, Fuel 260, 116287.
  • [35] DeBoef, B.L. 2003. Novel rhodium catalyzed [4+ 2] and [4+ 2+ 2] cyclization reactions: New methods for the synthesis of six and eight-membered rings, Washington University in St, Louis.
  • [36] Torres, F.E., Kuhn, P., Bruyker, Bell, D. De A.G., Wolkin, M.V., Peeters, E. Williamson, J.R., Anderson, G.B., Schmitz, G.P., Recht, M.I. 2004. Enthalpy arrays, Proceedings of the National Academy of Sciences, 101, 9517-9522.
  • [37] Bein, B. 2006. Entropy, Best Practice & Research Clinical Anaesthesiology, 20, 101-109.
  • [38] Jia, C.-S., Zhang, L.-H., Peng, X.-L., Luo, J.-X. Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.- D. Tang, 2019. Prediction of entropy and Gibbs free energy for nitrogen, Chem. Eng. Sci. 202, 70–74.
  • [39] Zuo, R. Zhang, H., Wang, B.-L. Meng, S.-C. Chen, P., Zhang, R. 2016. Quantum chemistry study on the adduct reaction paths as functions of temperature in GaN/AlN MOVPE growth, ECS J. Solid State Sci. Technol. 5, P667.
  • [40] Chakraborty, A., Saha, B.B. Ng, K.C., Koyama, S. Srinivasan, K.J.L. 2009. Theoretical insight of physical adsorption for a single-component adsorbent+ adsorbate system: I. Thermodynamic property surfaces, 25, 2204-2211.
  • [41] Bayoumy, A.M., Ibrahim, M. Omar. A. 2020 Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives, Opt. Quant. Electron. 52, 1–13.
  • [42] Prabavathi, N., Nilufer, A., Krishnakumar, B. 2013. Spectroscopy, Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin, 114 101-113.
  • [43] Obot, I., Macdonald, D. Gasem, Z. 2015. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview, Corros. Sci. 99, 1–30.
  • [44] Akinpelu, O.I., Lawal, M.M., Kumalo, H.M. Mhlongo, N.N.J.J.o.B.S.m2022. Dynamics, Computational studies of the properties and activities of selected trisubstituted benzimidazoles as potential antitubercular drugs inhibiting MTB-FtsZ polymerization, 40 1558-1570.
  • [45] H. Zhang, H. Zhao, X. Wang, Y. Shang, B. Han, Z.J.J.o.m.m. Li, 2014. Theoretical study on the mechanisms of polyethylene electrical breakdown strength increment by the addition of voltage stabilizers, 20, 1-11.
  • [46] Rohling, R.Y., Tranca, I.C. E.J. Hensen, E.A.J.A.c. Pidko, 2018. Mechanistic Insight into the [4+ 2] Diels-Alder Cycloaddition over First, Row d-Block Cation-Exchanged Faujasites 9, 376–391.
  • [47] Bendikov, M. Wudl, F. D.F.J.C.r. Perepichka, 2004. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics, 104. 4891-4946.

Pirol ve Akrilonitril Arasındaki Diels-Alder Reaksiyon Mekanizmasının Teorik Olarak İncelenmesi

Year 2025, Volume: 29 Issue: 2, 327 - 334, 25.08.2025

Abstract

Diels Alder reaksiyonları çeşitli önemli moleküllerin sentezinde kullanılan en iyi yöntemdir. Bu çalışmada bu reaksiyonlara örnek olabilecek pirol ve akrilonitril arasındaki reaksiyon mekanizması DFT ile açıklanmıştır. 6-31+G(d,p) baz setli B3LYP yöntemi kullanılarak kimyasal sertlik, yumuşaklık, elektrofiliklik indeksi, elektrokimyasal potansiyel ve termodinamik özellikler hesaplanmıştır. Bu özellikleri toluen gibi çözücülerle hesapladığımızda DA reaksiyonu sonucu oluşan ürünün HOMO ve LUMO orbitalleri arasındaki boşluk gaz fazında 9,53 eV iken, toluen çözücü ortamında 6,49 eV'ye düşmüştür. Ayrıca hesaplamalar sonucunda; entalpi, entropi ve iç enerji gibi termodinamik parametreler artan sıcaklıkla artmış, ancak Gibbs serbest enerjisi azalmıştır.

References

  • [1] Diels, O., Alder, K. 1928. Synthesen in Der Hydroaromatischen Reihe. Leibigs Ann. Chem. 460, 98−122.
  • [2] Tasdelen, M. A. 2011. Diels−Alder “click” Reactions: Recent Applications in Polymer and Material Science. Polym. Chem. 2, 2133−2145.
  • [3] Heravi, M. M., Ahmadi, T., Ghavidel, M., Heidari, B., Hamidi, H. 2015. Recent Applications of the Hetero Diels−Alder Reaction in the Total Synthesis of Natural Products. RSC Adv. 5, 101999 − 102075.
  • [4] Nicolaou, K. C., Snyder, S. A., Montagnon, T., Vassilikogiannakis, G. 2002. The Diels - Alder Reaction in Total Synthesis. Chem., Int. Ed. 41, 1668.
  • [5] Kappe, C. O., Murphree, S. S., Padwa, A. 1997. Synthetic Applications of Furan Diels-Alder Chemistry. Tetrahedron 53, 14179−14233.
  • [6] Funel, J.-A., Abele, S. 2013. Industrial Applications of the Diels-Alder Reaction. Angew. Chem., Int. Ed. 52, 3822−3863.
  • [7] Peterson, A. M., Jensen, R. E., Palmese, G. R. 2010. Room-Temperature Healing of a Thermosetting Polymer Using the Diels- Alder Reaction. ACS Appl. Mater. Interfaces, 2, 1141−1149.
  • [8] Zeng, C., Seino, H., Ren, J., Hatanaka, K., Yoshie, N. 2013. Bio-Based Furan Polymers with Self-Healing Ability. Macromolecules, 46, 1794−1802.
  • [9] U. Rehman, A. Mansha, M. Zahid, S. Asim, A.F. Zahoor, Z.A. Rehan, 2022. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels-Alder reactions of an antiviral compound 7H-benzo [a] phenalene, Struct. Chem. 1–14.
  • [10] B.S. Bodnar, M.J. Miller, 2011. The nitrosocarbonyl hetero-Diels–Alder reaction as a useful tool for organic syntheses, Angew. Chem. Int. Ed. 50, 5630–5647.
  • [11] D. McLeod, M. K. Thogersen, N. I. Jessen, K. A. Jorgensen, C. S. Jamieson, X.-S. Xue, K. Houk, F. Liu and R. Hoffmann. 2019. Accounts of Chemical Research 52, 3488.
  • [12] J. S. Barber, M. M. Yamano, M. Ramirez, E. R. Darzi, R. R. Knapp, F. Liu, K. Houk, and N. K. Garg, 2018. Nature Chemistry 10, 953.
  • [13] A. N. S. Chauhan, G. Mali, and R. D. Erande, 2022. Asian Journal of Organic Chemistry 11, e202100793.
  • [14] M.-M. Xu, L. Yang, K. Tan, X. Chen, Q.-T. Lu, K. Houk, and Q. Cai, 2021. Nature Catalysis 4, 892.
  • [15] Y. S. Zholdassov, L. Yuan, S. R. Garcia, R. W. Kwok, A. Boscoboinik, D. J. Valles, M. Marianski, A. Martini, R. W. Carpick, and A. B. 2023. Braunschweig, Science 380, 1053.
  • [16] S. Chen, P. Yu, and K. Houk, 2018. Journal of the American Chemical Society 140, 18124.
  • [17] Houk, K. N., Gonzalez, J., Li, Y. 1995. Pericyclic Reaction Transition States: Passions and Punctilios, 1935−1995. Acc. Chem. Res. 28, 81−90.
  • [18] Houk, K. N., Li, Y., Evanseck, J. D. 1992. Transition Structures of Hydrocarbon Pericyclic Reactions. Angew. Chem., Int. Ed. Engl. 31, 682−708.
  • [19] Domingo, L. R., José Aurell, M., Pérez, P., Contreras, R. 2003. Origin of the Synchronicity on the Transition Structures of Polar Diels-AlderReactions. Are These Reactions [4 + 2] Processes? J. Org. Chem., 68, 3884−3890.
  • [20] Xujian Chen, Chengcheng Wei, Min Xie, Yongjun Hu, 2023. Single-Photon Ionization Induced New Covalent Bond Formation in Acrylonitrile(AN)–Pyrrole(Py) Clusters. J. Phys. Chem. A, 127, 40, 8272–8279.
  • [21] Cetiner, S., Kalaoglu, F., Karakas, H. et al. 2011. Characterization of conductive poly(acrylonitrile-co-vinylacetate) composites: Matrix polymerization of pyrrole derivatives. Fibers Polym 12, 151–158.
  • [22] El-Aassar, M.R., Shibraen, M.H.M.A., Abdel-Fattah, Y.R. et al. Functionalization of Electrospun Poly(Acrylonitrile-co-Styrene/Pyrrole) Copolymer Nanofibers for Using as a High-performance Carrier for Laccase Immobilization. Fibers Polym 20, 2268–2279.
  • [23] Gandini, A., Carvalho, A.J.F., Trovatti, E., Kramer, R.K. and Lacerda, T.M. 2018. Eur. J. Lipid Sci. Technol., Macromolecular materials based on the application of the Diels–Alder reaction to natural polymers and plant oils, 120, 1700091.
  • [24] Dutt, G., Ghanty, T. 2003. Rotational dynamics of nondipolar probes in ethanols: How does the strength of the solute-solvent hydrogen bond impede molecular rotation? J. Chem. Phys. 119, 4768–4774.
  • [25] Ali, M., Mansha A., Asim, S., Zahid, M., Usman, Ali, M. N. 2018. DFT study for the spectroscopic and structural analysis of p-dimethylamino azobenzene, J. Spectrosc. 2018, 9365153, 15 pages.
  • [26] Frisch, M.J., Trucks et.al. 2016. Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT.
  • [27] C. Barros, P. De Oliveira, F. Jorge, A. Canal Neto, M. Campos, 2010. Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties, Mol. Phys. 108, 1965–1972.
  • [28]Dennington, R. Keith, T., Millam, J. GaussView, Version 6. Semichem Inc., Shawnee Mission, KS, 2016.
  • [29]Jahantigh, F., Ghorashi, S.B., Belverdi, A.R. 2018. A first principle study of benzimidazobenzophenanthrolin and tetraphenyldibenzoperiflanthene to design and construct novel organic solar cells, Phys. B Condens. Matter 542, 32–36.
  • [30]Zheng, S., Geva, E., Dunietz, B.D. 2013. Solvated charge transfer states of functionalized anthracene and tetracyanoethylene dimers: a computational study based on a range separated hybrid functional and charge constrained self-consistent field with switching Gaussian polarized continuum models, J. Chem. Theory Comput. 9, 1125–1131.
  • [31] Hussain, R., Saeed, M., Mehboob, M.Y., Khan, S.U., Khan, M.U., Adnan, M., Ahmed, Iqbal, M. J., Ayub, K.J.R. 2020. Density functional theory study of palladium cluster adsorption on a graphene support, 10, 20595-20607.
  • [32]B. Champagne, E.A. Perp`ete, D. Jacquemin, S.J. Van Gisbergen, E.-J. Baerends, C. Soubra-Ghaoui, K.A. Robins, B. Kirtman. 2000. Assessment of conventional density functional schemes for computing the dipole moment and (hyper) polarizabilities of push− pull π-conjugated systems, Chem. A Eur. J. 104 4755–4763.
  • [33] Best, R.B., Hummer, G. 2005. Reaction coordinates and rates from transition paths, Proceedings of the National Academy of Sciences, 102, 6732-6737.
  • [34] Ren, S.-J., Wang, C.-P., Xiao, Y., Deng, J. Tian, Y., Song, J-J., Cheng, X.-J., Sun, G.-F. 2020. Thermal properties of coal during low temperature oxidation using a grey correlation method, Fuel 260, 116287.
  • [35] DeBoef, B.L. 2003. Novel rhodium catalyzed [4+ 2] and [4+ 2+ 2] cyclization reactions: New methods for the synthesis of six and eight-membered rings, Washington University in St, Louis.
  • [36] Torres, F.E., Kuhn, P., Bruyker, Bell, D. De A.G., Wolkin, M.V., Peeters, E. Williamson, J.R., Anderson, G.B., Schmitz, G.P., Recht, M.I. 2004. Enthalpy arrays, Proceedings of the National Academy of Sciences, 101, 9517-9522.
  • [37] Bein, B. 2006. Entropy, Best Practice & Research Clinical Anaesthesiology, 20, 101-109.
  • [38] Jia, C.-S., Zhang, L.-H., Peng, X.-L., Luo, J.-X. Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.- D. Tang, 2019. Prediction of entropy and Gibbs free energy for nitrogen, Chem. Eng. Sci. 202, 70–74.
  • [39] Zuo, R. Zhang, H., Wang, B.-L. Meng, S.-C. Chen, P., Zhang, R. 2016. Quantum chemistry study on the adduct reaction paths as functions of temperature in GaN/AlN MOVPE growth, ECS J. Solid State Sci. Technol. 5, P667.
  • [40] Chakraborty, A., Saha, B.B. Ng, K.C., Koyama, S. Srinivasan, K.J.L. 2009. Theoretical insight of physical adsorption for a single-component adsorbent+ adsorbate system: I. Thermodynamic property surfaces, 25, 2204-2211.
  • [41] Bayoumy, A.M., Ibrahim, M. Omar. A. 2020 Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives, Opt. Quant. Electron. 52, 1–13.
  • [42] Prabavathi, N., Nilufer, A., Krishnakumar, B. 2013. Spectroscopy, Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin, 114 101-113.
  • [43] Obot, I., Macdonald, D. Gasem, Z. 2015. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview, Corros. Sci. 99, 1–30.
  • [44] Akinpelu, O.I., Lawal, M.M., Kumalo, H.M. Mhlongo, N.N.J.J.o.B.S.m2022. Dynamics, Computational studies of the properties and activities of selected trisubstituted benzimidazoles as potential antitubercular drugs inhibiting MTB-FtsZ polymerization, 40 1558-1570.
  • [45] H. Zhang, H. Zhao, X. Wang, Y. Shang, B. Han, Z.J.J.o.m.m. Li, 2014. Theoretical study on the mechanisms of polyethylene electrical breakdown strength increment by the addition of voltage stabilizers, 20, 1-11.
  • [46] Rohling, R.Y., Tranca, I.C. E.J. Hensen, E.A.J.A.c. Pidko, 2018. Mechanistic Insight into the [4+ 2] Diels-Alder Cycloaddition over First, Row d-Block Cation-Exchanged Faujasites 9, 376–391.
  • [47] Bendikov, M. Wudl, F. D.F.J.C.r. Perepichka, 2004. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics, 104. 4891-4946.
There are 47 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics
Journal Section Articles
Authors

Aslı Öztürk Kiraz 0000-0001-9837-0779

Publication Date August 25, 2025
Submission Date March 28, 2025
Acceptance Date June 3, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Öztürk Kiraz, A. (2025). Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 327-334.
AMA Öztürk Kiraz A. Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile. J. Nat. Appl. Sci. August 2025;29(2):327-334.
Chicago Öztürk Kiraz, Aslı. “Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 327-34.
EndNote Öztürk Kiraz A (August 1, 2025) Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 327–334.
IEEE A. Öztürk Kiraz, “Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 327–334, 2025.
ISNAD Öztürk Kiraz, Aslı. “Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 327-334.
JAMA Öztürk Kiraz A. Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile. J. Nat. Appl. Sci. 2025;29:327–334.
MLA Öztürk Kiraz, Aslı. “Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 327-34.
Vancouver Öztürk Kiraz A. Theoretical Insight for the Diels-Alder Reaction Mechanism Between Pyrrole and Acrylonitrile. J. Nat. Appl. Sci. 2025;29(2):327-34.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.