Research Article
BibTex RIS Cite

Determination of Dynamic Properties of Pumice Soil in Isparta Işıkkent District

Year 2025, Volume: 29 Issue: 2, 375 - 387, 25.08.2025

Abstract

In this study, the saturated undrained and drained dynamic behaviors of a pumice-containing soil sample collected from a construction site located in the Işıkkent District of Isparta were investigated. Stress-controlled tests were conducted using the VJ Tech DSS-C dynamic simple shear device. The samples were subjected to cyclic loading at a frequency of 1 Hz under three different cyclic stress ratios: 0.2, 0.25, and 0.3. In the undrained tests, the liquefaction tendency of the samples and the development of excess pore water pressure were evaluated, while in the drained tests, volumetric deformation and changes in vertical effective stress were examined. The results indicate that an increase in cyclic stress ratio leads to greater shear deformations and a higher liquefaction potential under undrained conditions. In the drained tests, the soils were observed to undergo volumetric deformation. This study contributes to the engineering evaluation of the dynamic properties of pumice-containing soils.

References

  • [1] Korkmaz, H. 2006. Antakya’da Zemin Özellikleri ve Deprem Etkisi Arasındaki İlişki. Coğrafi Bilimler Dergisi, 4(2), 49-66.
  • [2] Balyemez, S., Berköz, L., 2010. Hasar Görebilirlik ve Kentsel Deprem Davranışı. İtüdergisi/a, 4(1).
  • [3] Kuşçu, M., Gedikoğlu, A., 1990. Isparta-Gölcük Yöresi Pomza Yataklarının Jeolojik Konumu. Jeoloji Mühendisliği Dergisi, 14(2), 69-78.
  • [4] Wesley, L. D. 2001. Determination of Specific Gravity and Void Ratio of Pumice Materials. Geotech. Test. J., 24 (4), 418–422.
  • [5] Pender, M. J., Wesley, L., Larkin, T., Pranjoto, S. 2006. Geotechnical Properties of a Pumice Sand. Soils and Foundations, 46(1), 69–81.
  • [6] Kikkawa, N., Pender, M. J., Orense, R. P., StGeorge, J. D., Matsushita, E. 2012. "K" _0 Compression and Stress Relaxation of Pumice Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(5), 625-628.
  • [7] Kikkawa, N., Orense, R. P., Pender, M. J. 2013. Observations on Microstructure of Pumice Particles Using Computed Tomograpy. Canadian Geotechnical Journal, 50(11), 1109-1117.
  • [8] Asadi, M. S., Asadi, M. B., Orense, R. P., Pender, M. J. 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8), 04018045.
  • [9] Marks, S., Larkin, T. J., Pender, M. J. 1998. The Dynamic Properties Of A Pumiceous Sand. Bulletin of the New Zealand National Society for Earthquake Engineering, 31(2), 86–102.
  • [10] Teachavorasinskun, S., Thongchim, P., Lukkunaprasit, P. 2002. Shear Modulus and Damping of Soft Bangkok Clays. Canadian Geothechnical Journal, 39(5), 1201–1208.
  • [11] Altun, S., ve Ansal, A. 2003. Tekrarlı Yükler Altında Kumların Gerilme-Şekil Değiştirme Özellikleri. İtüdergisi, 2(4), 25-34.
  • [12] Okada, W., Terzaghi, S., Cooper, J. Q., Patel, M. A., Adhikary, T. P. 2003. Seismic Design of a Highway in Pumiceous Land. In Proceedings of the 7th Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, 1-10.
  • [13] Sitharam, T.G., Govindaraju, L., Sridharan, A., 2004. Dynamic Properties and Liquefaction Potential. Geotechnics and Earthquake Hazards, 87, 1370–1378.
  • [14] Elibol, B., Erken, A. 2005. Doygun, Kısmi Doygun ve Kuru Kum Numunelerin Dinamik Davranışlarının İncelenmesi. Antalya Yöresinin İnşaat Mühendisliği Sorunları Kongresi, Antalya, 1-11.
  • [15] Meidani M., Shafiee A., Habibagahi G., Jafari M. K., Mohri Y., Ghahramani A., Chang C. S. 2008. Granule Shape Effect on the Shear Modulus and Damping Ratio of Mixed Gravel and Clay. Iranian Journal of Science and Technology, 32, 501–518.
  • [16] Salvati, L., Anhdan, L., 2008. Rate-Dependent Response of Dense Sand in Cyclic Triaxial Tests. Soils Found., 48, 447–451.
  • [17] Cai, Y., Dong, Q., Wang, J., Gu, C., Xu, C. 2015. Measurement of Small Strain Shear Modulus of Clean and Natural Sands in Saturated Condition Using Bender Element Test. Soil Dynamics and Earthquake Engineering, 76, 100-110.
  • [18] Karakan, E., Altun, S. 2016. Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi, 27(4), 7593-7617.
  • [19] Monkul, M. M., Yenigün, Ş., Bayat, E. E. 2017. Kuru Kum Numunelerin Sismik Sıvılaşma Potansiyelinin Dinamik Basit Kesme Deneyinden Belirlenmesi. 7. Geoteknik Sempozyumu, 22-24 Kasım, İstanbul, 697-705.
  • [20] Asadi, M. B., Asadi, M. S., Orense, R. P., Pender, M. J. 2018. Shear Wave Velocity-Based Assessment of Liquefaction Resistance of Natural Pumiceous Sands. Géotechnique Letters, 8(4), 262-267.
  • [21] Hubler, J.F., Athanasopoulos-Zekkos, A., Zekkos, D. 2018. Monotonic and Cyclic Simple Shear Response of Gravel-Sand Mixtures. Soil Dyn. Earthq. Eng., 115, 291–304.
  • [22] Sönmezer, Y. B. 2020. Siltli Kumlarda Gerilme Kontrollü ve Deformasyon Kontrollü Sıvılaşma Testlerinin Karşılaştırılması. El-Cezerî Fen ve Mühendislik Dergisi, 7(1), 322-337.
  • [23] Rui, S., Guo, Z., Si, T., Li, Y. 2020. Effect of Particle Shape on the Liquefaction Resistance of Calcareous Sands. Soil Dynamics and Earthquake Engineering, 137, 106302.
  • [24] Zhu, Z., Zhang, F., Peng, Q., Dupla, J. C., Canou, J., Cumunel, G., Foerster, E. 2021. Effect of the Loading Frequency on the Sand Liquefaction Behaviour in Cyclic Triaxial Tests. Soil Dynamics and Earthquake Engineering, 147, 106779.
  • [25] Marzuni, S. S., Fadaee, M., Bahmanpour, A., Derakhshandi, M. 2022. Effect of Cyclic Stress Ratio and Non-Plastic Fines Content on the Liquefaction Potential of Sandy and Silty Soil in Cyclic Triaxial Testing. Soil Mechanics and Foundation Engineering, 58(6), 467-473.
  • [26] Chaneva, J., Kluger, M. O., Moon, V., Lowe, D. J., Orense, R. 2024. Influence of Pumice and Fines Contents on the Extent of Particle Crushing in Pumiceous Sand-Silt Mixtures During Undrained Cyclic Triaxial Loading. Japanese Geotechnical Society Special Publication, 10(27), 1007-1012.
  • [27] Gardiner, E., Stringer, M., Rees, S. 2024. Liquefaction Resistance of Soils with Differing Pumice Content. Japanese Geotechnical Society Special Publication, 10(21), 803-808.
  • [28] ASTM C117-23. 2023. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.
  • [29] ASTM C136/C136M-19. 2020. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate.
  • [30] ASTM D4318-17e1. 2018. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
  • [31] ASTM D854-23. 2023. Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method.
  • [32] ASTM C127-24. 2024. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.
  • [33] ASTM D4253-16e1. 2019. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.
  • [34] Skempton, A. W. 1954. The Pore-Pressure Coefficients A and B. Geotechnique, 4(4), 143-147.
  • [35] Wair, B. R., DeJong, J. T., Shantz, T. 2012. Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering Research Center.
  • [36] Darendeli, B. M. 2001. Develope of a new family of normalize modulus reduction and material damping curves. Ph. D. Dissertation, The University of Texas at Austin., 362 p.

Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi

Year 2025, Volume: 29 Issue: 2, 375 - 387, 25.08.2025

Abstract

Özet: Bu çalışmada, Isparta’nın Işıkkent Mahallesi’nde bulunan inşaat sahasından alınan pomza içeren zemin numunesinin doygun haldeki drenajsız ve drenajlı dinamik davranışları incelenmiştir. Çalışmada, VJ Tech DSS-C dinamik basit kesme cihazı kullanılarak gerilme kontrollü deneyler gerçekleştirilmiştir. Numuneler, 0.2, 0.25 ve 0.3 olmak üzere üç farklı dinamik gerilme oranında, 1 Hz frekansta tekrarlı yüklemelere tabi tutulmuştur. Drenajsız deneylerde numunelerin sıvılaşma eğilimleri ve aşırı boşluk suyu basıncı gelişimi değerlendirilirken, drenajlı deneylerde hacimsel deformasyon ve düşey efektif gerilme değişimleri incelenmiştir. Sonuçlar, dinamik gerilme oranının artışıyla kayma deformasyonlarının büyüdüğünü ve drenajsız koşullarda numunelerin sıvılaşma potansiyelinin arttığını göstermektedir. Drenajlı deneylerde ise zeminlerin hacimsel deformasyona uğradığı belirlenmiştir. Çalışma, pomza içeren zeminlerin dinamik özelliklerinin mühendislik açısından değerlendirilmesine katkı sağlamaktadır.

Thanks

Bu çalışma, İstanbul Teknik Üniversitesi Zemin Laboratuvarı’nda bulunan VJ Tech DSS-C cihazı kullanılarak yapılmıştır. Yazarlar, İstanbul Teknik Üniversitesi’ne ve araştırma süresince sağladıkları destekler için Prof. Dr. Gürkan ÖZDEN ve Doç. Dr. E. Ece BAYAT’a teşekkür eder.

References

  • [1] Korkmaz, H. 2006. Antakya’da Zemin Özellikleri ve Deprem Etkisi Arasındaki İlişki. Coğrafi Bilimler Dergisi, 4(2), 49-66.
  • [2] Balyemez, S., Berköz, L., 2010. Hasar Görebilirlik ve Kentsel Deprem Davranışı. İtüdergisi/a, 4(1).
  • [3] Kuşçu, M., Gedikoğlu, A., 1990. Isparta-Gölcük Yöresi Pomza Yataklarının Jeolojik Konumu. Jeoloji Mühendisliği Dergisi, 14(2), 69-78.
  • [4] Wesley, L. D. 2001. Determination of Specific Gravity and Void Ratio of Pumice Materials. Geotech. Test. J., 24 (4), 418–422.
  • [5] Pender, M. J., Wesley, L., Larkin, T., Pranjoto, S. 2006. Geotechnical Properties of a Pumice Sand. Soils and Foundations, 46(1), 69–81.
  • [6] Kikkawa, N., Pender, M. J., Orense, R. P., StGeorge, J. D., Matsushita, E. 2012. "K" _0 Compression and Stress Relaxation of Pumice Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(5), 625-628.
  • [7] Kikkawa, N., Orense, R. P., Pender, M. J. 2013. Observations on Microstructure of Pumice Particles Using Computed Tomograpy. Canadian Geotechnical Journal, 50(11), 1109-1117.
  • [8] Asadi, M. S., Asadi, M. B., Orense, R. P., Pender, M. J. 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8), 04018045.
  • [9] Marks, S., Larkin, T. J., Pender, M. J. 1998. The Dynamic Properties Of A Pumiceous Sand. Bulletin of the New Zealand National Society for Earthquake Engineering, 31(2), 86–102.
  • [10] Teachavorasinskun, S., Thongchim, P., Lukkunaprasit, P. 2002. Shear Modulus and Damping of Soft Bangkok Clays. Canadian Geothechnical Journal, 39(5), 1201–1208.
  • [11] Altun, S., ve Ansal, A. 2003. Tekrarlı Yükler Altında Kumların Gerilme-Şekil Değiştirme Özellikleri. İtüdergisi, 2(4), 25-34.
  • [12] Okada, W., Terzaghi, S., Cooper, J. Q., Patel, M. A., Adhikary, T. P. 2003. Seismic Design of a Highway in Pumiceous Land. In Proceedings of the 7th Pacific Conference on Earthquake Engineering, Christchurch, New Zealand, 1-10.
  • [13] Sitharam, T.G., Govindaraju, L., Sridharan, A., 2004. Dynamic Properties and Liquefaction Potential. Geotechnics and Earthquake Hazards, 87, 1370–1378.
  • [14] Elibol, B., Erken, A. 2005. Doygun, Kısmi Doygun ve Kuru Kum Numunelerin Dinamik Davranışlarının İncelenmesi. Antalya Yöresinin İnşaat Mühendisliği Sorunları Kongresi, Antalya, 1-11.
  • [15] Meidani M., Shafiee A., Habibagahi G., Jafari M. K., Mohri Y., Ghahramani A., Chang C. S. 2008. Granule Shape Effect on the Shear Modulus and Damping Ratio of Mixed Gravel and Clay. Iranian Journal of Science and Technology, 32, 501–518.
  • [16] Salvati, L., Anhdan, L., 2008. Rate-Dependent Response of Dense Sand in Cyclic Triaxial Tests. Soils Found., 48, 447–451.
  • [17] Cai, Y., Dong, Q., Wang, J., Gu, C., Xu, C. 2015. Measurement of Small Strain Shear Modulus of Clean and Natural Sands in Saturated Condition Using Bender Element Test. Soil Dynamics and Earthquake Engineering, 76, 100-110.
  • [18] Karakan, E., Altun, S. 2016. Silt Kum Karışımlarının Sıvılaşma Davranışı ve Sıvılaşma Sonrası Hacimsel Deformasyon Özellikleri. Teknik Dergi, 27(4), 7593-7617.
  • [19] Monkul, M. M., Yenigün, Ş., Bayat, E. E. 2017. Kuru Kum Numunelerin Sismik Sıvılaşma Potansiyelinin Dinamik Basit Kesme Deneyinden Belirlenmesi. 7. Geoteknik Sempozyumu, 22-24 Kasım, İstanbul, 697-705.
  • [20] Asadi, M. B., Asadi, M. S., Orense, R. P., Pender, M. J. 2018. Shear Wave Velocity-Based Assessment of Liquefaction Resistance of Natural Pumiceous Sands. Géotechnique Letters, 8(4), 262-267.
  • [21] Hubler, J.F., Athanasopoulos-Zekkos, A., Zekkos, D. 2018. Monotonic and Cyclic Simple Shear Response of Gravel-Sand Mixtures. Soil Dyn. Earthq. Eng., 115, 291–304.
  • [22] Sönmezer, Y. B. 2020. Siltli Kumlarda Gerilme Kontrollü ve Deformasyon Kontrollü Sıvılaşma Testlerinin Karşılaştırılması. El-Cezerî Fen ve Mühendislik Dergisi, 7(1), 322-337.
  • [23] Rui, S., Guo, Z., Si, T., Li, Y. 2020. Effect of Particle Shape on the Liquefaction Resistance of Calcareous Sands. Soil Dynamics and Earthquake Engineering, 137, 106302.
  • [24] Zhu, Z., Zhang, F., Peng, Q., Dupla, J. C., Canou, J., Cumunel, G., Foerster, E. 2021. Effect of the Loading Frequency on the Sand Liquefaction Behaviour in Cyclic Triaxial Tests. Soil Dynamics and Earthquake Engineering, 147, 106779.
  • [25] Marzuni, S. S., Fadaee, M., Bahmanpour, A., Derakhshandi, M. 2022. Effect of Cyclic Stress Ratio and Non-Plastic Fines Content on the Liquefaction Potential of Sandy and Silty Soil in Cyclic Triaxial Testing. Soil Mechanics and Foundation Engineering, 58(6), 467-473.
  • [26] Chaneva, J., Kluger, M. O., Moon, V., Lowe, D. J., Orense, R. 2024. Influence of Pumice and Fines Contents on the Extent of Particle Crushing in Pumiceous Sand-Silt Mixtures During Undrained Cyclic Triaxial Loading. Japanese Geotechnical Society Special Publication, 10(27), 1007-1012.
  • [27] Gardiner, E., Stringer, M., Rees, S. 2024. Liquefaction Resistance of Soils with Differing Pumice Content. Japanese Geotechnical Society Special Publication, 10(21), 803-808.
  • [28] ASTM C117-23. 2023. Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.
  • [29] ASTM C136/C136M-19. 2020. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate.
  • [30] ASTM D4318-17e1. 2018. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
  • [31] ASTM D854-23. 2023. Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method.
  • [32] ASTM C127-24. 2024. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.
  • [33] ASTM D4253-16e1. 2019. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.
  • [34] Skempton, A. W. 1954. The Pore-Pressure Coefficients A and B. Geotechnique, 4(4), 143-147.
  • [35] Wair, B. R., DeJong, J. T., Shantz, T. 2012. Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering Research Center.
  • [36] Darendeli, B. M. 2001. Develope of a new family of normalize modulus reduction and material damping curves. Ph. D. Dissertation, The University of Texas at Austin., 362 p.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering
Journal Section Articles
Authors

Kutay Güler 0000-0001-6580-3777

Sıddıka Nilay Keskin 0000-0002-0367-943X

Publication Date August 25, 2025
Submission Date April 9, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Güler, K., & Keskin, S. N. (2025). Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 375-387.
AMA Güler K, Keskin SN. Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi. J. Nat. Appl. Sci. August 2025;29(2):375-387.
Chicago Güler, Kutay, and Sıddıka Nilay Keskin. “Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 375-87.
EndNote Güler K, Keskin SN (August 1, 2025) Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 375–387.
IEEE K. Güler and S. N. Keskin, “Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 375–387, 2025.
ISNAD Güler, Kutay - Keskin, Sıddıka Nilay. “Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 375-387.
JAMA Güler K, Keskin SN. Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi. J. Nat. Appl. Sci. 2025;29:375–387.
MLA Güler, Kutay and Sıddıka Nilay Keskin. “Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 375-87.
Vancouver Güler K, Keskin SN. Isparta Işıkkent Mahallesi Pomzalı Zeminin Dinamik Özelliklerinin Belirlenmesi. J. Nat. Appl. Sci. 2025;29(2):375-87.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.