Research Article
BibTex RIS Cite

Cu₂ZnSnSe₄ İnce Filmleri Üzerindeki Tavlama Etkileri: Yapısal, Elektriksel ve Optik Karakterizasyon

Year 2025, Volume: 29 Issue: 2, 397 - 406, 25.08.2025
https://doi.org/10.19113/sdufenbed.1674189

Abstract

Bu çalışma, termal buharlaştırma yöntemiyle üretilen Cu₂ZnSnSe₄ ince filmlerin yapısal, elektriksel ve optik özellikleri üzerine tavlama işleminin etkilerini araştırmayı amaçlamaktadır. SEM-EDAX, XRD ve Raman analizlerinden elde edilen sonuçlar, CZTSe ince filmlerin başarılı bir şekilde üretildiğini ortaya koymuştur. Tavlama sıcaklığına bağlı olarak, tane boyutunda artış ve küresel şekilli tanelerden çubuk biçimli yapılara doğru bir morfolojik dönüşüm gözlemlenmiştir. Oda sıcaklığındaki özdirencin, artan tavlama sıcaklığı ile birlikte azaldığı belirlenmiş; bu değerler sırasıyla 400 °C, 500 °C ve 600 °C'de tavlanan filmler için 44,10 Ω-cm, 2,61 Ω-cm ve 3,08 Ω-cm olarak ölçülmüştür. Aynı örnekler için Hall etkisi ölçümleriyle elde edilen taşıyıcı yoğunlukları sırasıyla 5,13×10¹⁵ cm⁻³, 3,07×10¹⁷ cm⁻³ ve 1,09×10¹⁷ cm⁻³ olup, tüm örneklerde p-tipi iletkenlik gözlemlenmiştir. Tavlanmamış ve tavlanmış ince filmler sırasıyla 1,98 eV, 1,78 eV, 1,35 eV ve 1,65 eV optik bant aralığı değerleri sergilemiştir.

Project Number

Pamukkale University- Scientific Research Project Center (PAU-BAP)- Project number 2013FBE021.

References

  • [1] Mufti N., Amrillah T., Taufiq A., Sunaryono, Aripriharta, Diantoro M., Zulhadjri, N., H. 2020. Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146-1157.
  • [2] Rahman M. F, Chowdhury M., Marasamy L., Mohammed M. K. A., Haque M. D., Al Ahmed S. R., Irfan A., Chaudhry A. R., Goumri-Said S. 2024. Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: a numerical simulation approach by SCAPS-1D. RSC Advance, 14(3), 1924-1938.
  • [3] Reinhard P., Chirila A., Blosch P., Pianezzi F., Nishiwaki S., Buecheler S., Tiwari A. N. 2013. Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE Journal of Photovoltaics, 3(1), 572-580.
  • [4] Nakamura M., Yamaguchi K., Kimoto Y., Yasaki Y., Kato T., Sugimoto H. 2019. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6), 1863-1867.
  • [5] Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W., Powalla M. 2011. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19(7), 894-897.
  • [6] Bendapudi S. S. K. 2011. Novel Film Formation Pathways for Cu2ZnSnSe4 for Solar Cell Applications. University of South Florida, Master of Science in Electrical Engineering, 18s, Tampa, USA.
  • [7] Siebentritt S., Schorr S. 2012. Kesterites—a challenging material for solar cells. Progress in Photovoltaics: Research and Applications, 20(5), 512-519.
  • [8] Friedlmeier T., Dittrich H., Schock H. 1998. Growth and Characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 Thin Films for Photovoltaic Applications. The 11th Conference on Ternary and Multinary Compounds (ICTMC-11), 8-12 September, Salford, UK, 345-348.
  • [9] Salomé P. M. P., Fernandes P. A., da Cunha A. F., Leitão J. P., Malaquias J., Weber A., González J.C., da Silva M. I. N. 2010. Growth pressure dependence of Cu2ZnSnSe4 properties. Solar Energy Materials and Solar Cells, 94(12), 2176-2180.
  • [10] Oh M., Kim W. K. 2014. Sn compensation via SnSe binary vapor supply during Cu2ZnSnSe4 formation. Journal of Alloys and Compounds, 616, 436-441.
  • [11] Uday Bhaskar P., Suresh Babu G., Kishore Kumar Y. B., Sundara Raja V. 2013. Growth and characterization of Cu2ZnSnSe4 thin films by a two-stage process. Solar Energy Materials and Solar Cells, 115, 181-188.
  • [12] Shin B., Gunawan O., Zhu Y., Bojarczuk N. A., Chey S. J., Guha S. 2013. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21(1), 72-76.
  • [13] Repins I., Beall C., Vora N., DeHart C., Kuciauskas D., Dippo P., To B., Mann J., Hsu W-C, Goodrich A. 2012. Co-evaporated Cu2ZnSnSe4 films and devices. Solar Energy Materials and Solar Cells, 101, 154-159.
  • [14] Barkhouse D. A. R., Gunawan O., Gokmen T., Todorov T. K., Mitzi D. B. 2012. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell. Progress in Photovoltaics: Research and Applications, 20(1), 6-11.
  • [15] Todorov T. K., Tang J., Bag S., Gunawan O., Gokmen T., Zhu Y., Mitzi D. B. 2013. Beyond 11% efficiency: characteristics of state‐of‐the‐art Cu2ZnSn(S,Se)4 solar cells. Advanced Energy Materials, 3(1), 34-38.
  • [16] Kim S., Kim J. 2013. Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell. Thin Solid Films, 547, 178-180.
  • [17] Wang W., Winkler M. T., Gunawan O., Gokmen T., Todorov T. K., Zhu Y., Mitzi D.B. 2014. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465.
  • [18] Zhou J., Xu X., Wu H., Wang J., Lou L., Yin K., Gong Y., Shi J., Luo Y., Li D. 2022. A precisely regulating phase evolution strategy for highly efficient kesterite solar cells. arXiv preprint arXiv:221013714. (Accessed date: 07.04.2025).
  • [19] Wang J., Lou L., Yin K., Meng F., Xu X., Jiao M., Zhang B., Shi J., Wu H., Luo Y. 2024. Vacancy enhanced cation ordering enables> 15% efficiency in Kesterite solar cells. arXiv preprint arXiv:240405974. (Accessed date: 07.04.2025).
  • [20] Du Y. F., Zhou W. H., Zhou Y. L., Li P. W., Fan J. Q, He J. J, Wu S. X. 2012. Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles. Materials Science in Semiconductor Processing, 15(2), 214-217.
  • [21] Adhi Wibowo R., Hwa Jung W., Kim K. H. 2010. Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders. Journal of Physics and Chemistry of Solids, 71(12), 1702-1706.
  • [22] Meng M., Wan L., Zou P., Miao S., Xu J. 2013. Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors. Applied Surface Science, 273, 613-616.
  • [23] Shao L., Zhang J., Zou C., Xie W. 2012. Cu2ZnSnSe4 Thin Films by Selenization of Simultaneously Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications. Physics Procedia, 32, 640-644.
  • [24] Adhi Wibowo R., Soo Lee E., Munir B., Ho Kim K. 2007. Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films. Physica Status Solidi (a), 204(10), 3373-3379.
  • [25] Kuo D. H., Hsu J. T., Saragih A. D. 2014. Effects of the metallic target compositions on the absorber properties and the performance of Cu2ZnSnSe4 solar cell devices fabricated on TiN-coated Mo/glass substrates. Materials Science and Engineering: B, 186, 94-100.
  • [26] Kim K. H., Amal I. 2011. Growth of Cu2ZnSnSe4 thin films by selenization of sputtered single-layered Cu-Zn-Sn metallic precursors from a Cu-Zn-Sn alloy target. Electronic Materials Letters, 7(3), 225-230.
  • [27] Iljina J., Volobujeva O., Raadik T., Revathi N., Raudoja J., Loorits M., Traksmaa R., Mellikov E. 2013. Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers. Thin Solid Films, 535, 14-17.
  • [28] Hong S., Kim C., Park S. C, Rhee I., Kim D. H., Kang J. K. 2012. Characteristics of Cu2ZnSnSe4 Film Formed by Using Co-sputtered Precursors and Selenization. Molecular Crystals and Liquid Crystals, 565(1), 147-152.
  • [29] Suresh Babu G., Kishore Kumar Y. B., Uday Bhaskar P., Sundara Raja V. 2008. Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications. Journal of Physics D: Applied Physics, 41(20), 205305.
  • [30] Jung S., Gwak J., Yun J. H., Ahn S., Nam D., Cheong H., Ahn S., Cho A., Shin K., Yoon K. 2013. Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process. Thin Solid Films, 535, 52-56.
  • [31] Amal M., Kim K. 2012. Optical properties of selenized Cu2ZnSnSe4 films from a Cu-Zn-Sn metallic precursor. Chalcogenide Letters, 9(8), 345-353.
  • [32] Altosaar M., Raudoja J., Timmo K., Danilson M., Grossberg M., Krunks M., Varema T., Mellikov E. 2006. Cu2ZnSnSe4 monograin powders for solar cell application. IEEE 4th World Conference on Photovoltaic Energy Conference, 7-12 May Waikoloa, HI, USA, 468-470.
  • [33] Nagaoka A., Yoshino K., Taniguchi H., Taniyama T., Miyake H. 2012. Growth of Cu2ZnSnSe4 single crystals from Sn solutions. Journal of Crystal Growth, 354(1), 147-151.
  • [34] Lee P. Y., Shei S. C., Hsu E. H., Chang S. J., Chang S. P. 2013. Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine. Materials Letters, 98, 71-73.
  • [35] Chou C. S., Su F. C., Chen K., Wu P., Tseng C. S. 2014. Thermo-chemistry guided synthesis of Cu2ZnSnSe4 compounds using solvo-thermal method. Advanced Powder Technology, 25(4), 1285-1291.
  • [36] Wibowo R. A., Kim W. S., Lee E. S., Munir B., Kim K. H. 2007. Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets. Journal of Physics and Chemistry of Solids, 68(10), 1908-1913.
  • [37] Djemour R., Redinger A., Mousel M., Gutay L., Fontane X., Izquierdo-Roca V., Perez-Rodriguez A., Siebentritt S. 2013. The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4. Optics Express, 21(Suppl 4), A695-703.
  • [38] Dimitrievska M., Oliva F., Guc M., Giraldo S., Saucedo E., Pérez-Rodríguez A., Izquierdo-Roca V. 2019. Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. Journal of Materials Chemistry A, 7(21), 13293-13304.
  • [39] Rakitin V. V., Novikov G. F. 2017. Third-generation solar cells based on quaternary copper compounds with the kesterite-type structure. Russian Chemical Reviews, 86(2), 99-112.
  • [40] Mesa F., Leguizamon A., Dussan A., Gordillo G. 2016. Optoelectrical, structural and morphological characterization of Cu2ZnSnSe4 compound used in photovoltaic applications. Applied Surface Science, 384, 386-392.
  • [41] Kuo S. Y., Lai F. I., Lin K. J., Yang J. F. 2024. Influence of the reaction pathway on the defect concentration of Cu2ZnSnSe4 thin film solar cells by manipulation selenization temperature ramping. Sustainable Materials and Technologies, 40, e00920.
  • [42] Zaki M. Y., Sava F., Simandan I. D., Stavarache I., Velea A., Pintilie L. 2025. Optimization of CZTSe Thin Films Using Sequential Annealing in Selenium and Tin-Selenium Environments. Inorganic Chemistry, 64(1), 1-10.
  • [43] Minnam Reddy V. R., Pallavolu M. R., Guddeti P. R., Gedi S., Bathal Reddy K. K. Y., Pejjai B., Kim W. K., Kotte T. R., Park C. 2019. Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. Journal of Industrial and Engineering Chemistry, 76, 39-74.
  • [44] Liu W. J., Xiong G. X., Wang W. P. 2007. Research on synthesis and conductivity of ferrocenyl Schiff base and its salt. Applied Organometallic Chemistry, 21(2), 83-88.
  • [45] As D. 1998. Defect related optical and electrical properties of mbe grown cubic GaN epilayers. Radiation effects and defects in solids, 146(1-4), 145-160.
  • [46] Pankove J.I. 1975. Optical processes in semiconductors, Dover Publications, New York, USA 34-36s.
  • [47] Cabuk M., Yavuz M., Ibrahim Unal H., Alan Y. 2014. Synthesis, characterization, and enhanced antibacterial activity of chitosan‐based biodegradable conducting graft copolymers. Polymer Composites, 36(3), 497-509.
  • [48] Larbi T., Amara M. A., Ouni B., Amlouk M. 2017. Enhanced photocatalytic degradation of methylene blue dye under UV-sunlight irradiation by cesium doped chromium oxide thin films. Materials Research Bulletin, 95, 152-162.
  • [49] Park D., Nam D., Jung S., An S., Gwak J., Yoon K., Yun J. H., Cheong H. 2011. Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation. Thin Solid Films, 519(21), 7386-7389.
  • [50] Chen L. J., Chuang Y. J. 2013. Diethylenetriamine assisted synthesis and characterization of stannite quaternary semiconductor Cu2ZnSnSe4 nanorods by self-assembly. Journal of Crystal Growth, 376, 11-16.

Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization

Year 2025, Volume: 29 Issue: 2, 397 - 406, 25.08.2025
https://doi.org/10.19113/sdufenbed.1674189

Abstract

This study aims to explore the effects of annealing on the structural, electrical, and optical properties of Cu₂ZnSnSe₄ thin films fabricated by thermal evaporation. Results obtained from SEM equipped with EDAX, XRD, and Raman analysis revealed that CZTSe thin films were successfully obtained. Depending on the annealing temperature, increasing grain size and shifting from spherically shaped grains to rod-shaped particles were observed. The room temperature resistivity decreased with increasing annealing temperature, exhibiting values of 44.10 Ω-cm, 2.61 Ω-cm, and 3.08 Ω-cm for films annealed at 400 °C, 500 °C, and 600 °C, respectively. Carrier concentrations of the same samples obtained from Hall Effect measurements were observed as 5.13x1015 cm-3, 3.07x1017 cm-3, and 1.09x1017 cm-3 with p-type conductivity. The as-deposited and annealed thin films exhibited optical band gap values of 1.98 eV, 1.78 eV, 1.35 eV, and 1.65 eV, respectively.

Supporting Institution

Pamukkale University- Scientific Research Project Center (PAU-BAP)- Project number 2013FBE021.

Project Number

Pamukkale University- Scientific Research Project Center (PAU-BAP)- Project number 2013FBE021.

Thanks

This study was financially supported by Pamukkale University - Scientific Research Project Center (PAU-BAP) with the project number 2013FBE021.

References

  • [1] Mufti N., Amrillah T., Taufiq A., Sunaryono, Aripriharta, Diantoro M., Zulhadjri, N., H. 2020. Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 207, 1146-1157.
  • [2] Rahman M. F, Chowdhury M., Marasamy L., Mohammed M. K. A., Haque M. D., Al Ahmed S. R., Irfan A., Chaudhry A. R., Goumri-Said S. 2024. Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: a numerical simulation approach by SCAPS-1D. RSC Advance, 14(3), 1924-1938.
  • [3] Reinhard P., Chirila A., Blosch P., Pianezzi F., Nishiwaki S., Buecheler S., Tiwari A. N. 2013. Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE Journal of Photovoltaics, 3(1), 572-580.
  • [4] Nakamura M., Yamaguchi K., Kimoto Y., Yasaki Y., Kato T., Sugimoto H. 2019. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9(6), 1863-1867.
  • [5] Jackson P., Hariskos D., Lotter E., Paetel S., Wuerz R., Menner R., Wischmann W., Powalla M. 2011. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 19(7), 894-897.
  • [6] Bendapudi S. S. K. 2011. Novel Film Formation Pathways for Cu2ZnSnSe4 for Solar Cell Applications. University of South Florida, Master of Science in Electrical Engineering, 18s, Tampa, USA.
  • [7] Siebentritt S., Schorr S. 2012. Kesterites—a challenging material for solar cells. Progress in Photovoltaics: Research and Applications, 20(5), 512-519.
  • [8] Friedlmeier T., Dittrich H., Schock H. 1998. Growth and Characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 Thin Films for Photovoltaic Applications. The 11th Conference on Ternary and Multinary Compounds (ICTMC-11), 8-12 September, Salford, UK, 345-348.
  • [9] Salomé P. M. P., Fernandes P. A., da Cunha A. F., Leitão J. P., Malaquias J., Weber A., González J.C., da Silva M. I. N. 2010. Growth pressure dependence of Cu2ZnSnSe4 properties. Solar Energy Materials and Solar Cells, 94(12), 2176-2180.
  • [10] Oh M., Kim W. K. 2014. Sn compensation via SnSe binary vapor supply during Cu2ZnSnSe4 formation. Journal of Alloys and Compounds, 616, 436-441.
  • [11] Uday Bhaskar P., Suresh Babu G., Kishore Kumar Y. B., Sundara Raja V. 2013. Growth and characterization of Cu2ZnSnSe4 thin films by a two-stage process. Solar Energy Materials and Solar Cells, 115, 181-188.
  • [12] Shin B., Gunawan O., Zhu Y., Bojarczuk N. A., Chey S. J., Guha S. 2013. Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 21(1), 72-76.
  • [13] Repins I., Beall C., Vora N., DeHart C., Kuciauskas D., Dippo P., To B., Mann J., Hsu W-C, Goodrich A. 2012. Co-evaporated Cu2ZnSnSe4 films and devices. Solar Energy Materials and Solar Cells, 101, 154-159.
  • [14] Barkhouse D. A. R., Gunawan O., Gokmen T., Todorov T. K., Mitzi D. B. 2012. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell. Progress in Photovoltaics: Research and Applications, 20(1), 6-11.
  • [15] Todorov T. K., Tang J., Bag S., Gunawan O., Gokmen T., Zhu Y., Mitzi D. B. 2013. Beyond 11% efficiency: characteristics of state‐of‐the‐art Cu2ZnSn(S,Se)4 solar cells. Advanced Energy Materials, 3(1), 34-38.
  • [16] Kim S., Kim J. 2013. Effect of selenization on sprayed Cu2ZnSnSe4 thin film solar cell. Thin Solid Films, 547, 178-180.
  • [17] Wang W., Winkler M. T., Gunawan O., Gokmen T., Todorov T. K., Zhu Y., Mitzi D.B. 2014. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465.
  • [18] Zhou J., Xu X., Wu H., Wang J., Lou L., Yin K., Gong Y., Shi J., Luo Y., Li D. 2022. A precisely regulating phase evolution strategy for highly efficient kesterite solar cells. arXiv preprint arXiv:221013714. (Accessed date: 07.04.2025).
  • [19] Wang J., Lou L., Yin K., Meng F., Xu X., Jiao M., Zhang B., Shi J., Wu H., Luo Y. 2024. Vacancy enhanced cation ordering enables> 15% efficiency in Kesterite solar cells. arXiv preprint arXiv:240405974. (Accessed date: 07.04.2025).
  • [20] Du Y. F., Zhou W. H., Zhou Y. L., Li P. W., Fan J. Q, He J. J, Wu S. X. 2012. Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles. Materials Science in Semiconductor Processing, 15(2), 214-217.
  • [21] Adhi Wibowo R., Hwa Jung W., Kim K. H. 2010. Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders. Journal of Physics and Chemistry of Solids, 71(12), 1702-1706.
  • [22] Meng M., Wan L., Zou P., Miao S., Xu J. 2013. Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu–Zn–Sn–Se precursors. Applied Surface Science, 273, 613-616.
  • [23] Shao L., Zhang J., Zou C., Xie W. 2012. Cu2ZnSnSe4 Thin Films by Selenization of Simultaneously Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications. Physics Procedia, 32, 640-644.
  • [24] Adhi Wibowo R., Soo Lee E., Munir B., Ho Kim K. 2007. Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films. Physica Status Solidi (a), 204(10), 3373-3379.
  • [25] Kuo D. H., Hsu J. T., Saragih A. D. 2014. Effects of the metallic target compositions on the absorber properties and the performance of Cu2ZnSnSe4 solar cell devices fabricated on TiN-coated Mo/glass substrates. Materials Science and Engineering: B, 186, 94-100.
  • [26] Kim K. H., Amal I. 2011. Growth of Cu2ZnSnSe4 thin films by selenization of sputtered single-layered Cu-Zn-Sn metallic precursors from a Cu-Zn-Sn alloy target. Electronic Materials Letters, 7(3), 225-230.
  • [27] Iljina J., Volobujeva O., Raadik T., Revathi N., Raudoja J., Loorits M., Traksmaa R., Mellikov E. 2013. Selenisation of sequentially electrodeposited Cu–Zn and Sn precursor layers. Thin Solid Films, 535, 14-17.
  • [28] Hong S., Kim C., Park S. C, Rhee I., Kim D. H., Kang J. K. 2012. Characteristics of Cu2ZnSnSe4 Film Formed by Using Co-sputtered Precursors and Selenization. Molecular Crystals and Liquid Crystals, 565(1), 147-152.
  • [29] Suresh Babu G., Kishore Kumar Y. B., Uday Bhaskar P., Sundara Raja V. 2008. Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications. Journal of Physics D: Applied Physics, 41(20), 205305.
  • [30] Jung S., Gwak J., Yun J. H., Ahn S., Nam D., Cheong H., Ahn S., Cho A., Shin K., Yoon K. 2013. Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process. Thin Solid Films, 535, 52-56.
  • [31] Amal M., Kim K. 2012. Optical properties of selenized Cu2ZnSnSe4 films from a Cu-Zn-Sn metallic precursor. Chalcogenide Letters, 9(8), 345-353.
  • [32] Altosaar M., Raudoja J., Timmo K., Danilson M., Grossberg M., Krunks M., Varema T., Mellikov E. 2006. Cu2ZnSnSe4 monograin powders for solar cell application. IEEE 4th World Conference on Photovoltaic Energy Conference, 7-12 May Waikoloa, HI, USA, 468-470.
  • [33] Nagaoka A., Yoshino K., Taniguchi H., Taniyama T., Miyake H. 2012. Growth of Cu2ZnSnSe4 single crystals from Sn solutions. Journal of Crystal Growth, 354(1), 147-151.
  • [34] Lee P. Y., Shei S. C., Hsu E. H., Chang S. J., Chang S. P. 2013. Synthesis of Cu2ZnSnSe4 nanocrystals from metal sources using a facile process in isophorondiamine. Materials Letters, 98, 71-73.
  • [35] Chou C. S., Su F. C., Chen K., Wu P., Tseng C. S. 2014. Thermo-chemistry guided synthesis of Cu2ZnSnSe4 compounds using solvo-thermal method. Advanced Powder Technology, 25(4), 1285-1291.
  • [36] Wibowo R. A., Kim W. S., Lee E. S., Munir B., Kim K. H. 2007. Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets. Journal of Physics and Chemistry of Solids, 68(10), 1908-1913.
  • [37] Djemour R., Redinger A., Mousel M., Gutay L., Fontane X., Izquierdo-Roca V., Perez-Rodriguez A., Siebentritt S. 2013. The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4. Optics Express, 21(Suppl 4), A695-703.
  • [38] Dimitrievska M., Oliva F., Guc M., Giraldo S., Saucedo E., Pérez-Rodríguez A., Izquierdo-Roca V. 2019. Defect characterisation in Cu2ZnSnSe4 kesterites via resonance Raman spectroscopy and the impact on optoelectronic solar cell properties. Journal of Materials Chemistry A, 7(21), 13293-13304.
  • [39] Rakitin V. V., Novikov G. F. 2017. Third-generation solar cells based on quaternary copper compounds with the kesterite-type structure. Russian Chemical Reviews, 86(2), 99-112.
  • [40] Mesa F., Leguizamon A., Dussan A., Gordillo G. 2016. Optoelectrical, structural and morphological characterization of Cu2ZnSnSe4 compound used in photovoltaic applications. Applied Surface Science, 384, 386-392.
  • [41] Kuo S. Y., Lai F. I., Lin K. J., Yang J. F. 2024. Influence of the reaction pathway on the defect concentration of Cu2ZnSnSe4 thin film solar cells by manipulation selenization temperature ramping. Sustainable Materials and Technologies, 40, e00920.
  • [42] Zaki M. Y., Sava F., Simandan I. D., Stavarache I., Velea A., Pintilie L. 2025. Optimization of CZTSe Thin Films Using Sequential Annealing in Selenium and Tin-Selenium Environments. Inorganic Chemistry, 64(1), 1-10.
  • [43] Minnam Reddy V. R., Pallavolu M. R., Guddeti P. R., Gedi S., Bathal Reddy K. K. Y., Pejjai B., Kim W. K., Kotte T. R., Park C. 2019. Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance. Journal of Industrial and Engineering Chemistry, 76, 39-74.
  • [44] Liu W. J., Xiong G. X., Wang W. P. 2007. Research on synthesis and conductivity of ferrocenyl Schiff base and its salt. Applied Organometallic Chemistry, 21(2), 83-88.
  • [45] As D. 1998. Defect related optical and electrical properties of mbe grown cubic GaN epilayers. Radiation effects and defects in solids, 146(1-4), 145-160.
  • [46] Pankove J.I. 1975. Optical processes in semiconductors, Dover Publications, New York, USA 34-36s.
  • [47] Cabuk M., Yavuz M., Ibrahim Unal H., Alan Y. 2014. Synthesis, characterization, and enhanced antibacterial activity of chitosan‐based biodegradable conducting graft copolymers. Polymer Composites, 36(3), 497-509.
  • [48] Larbi T., Amara M. A., Ouni B., Amlouk M. 2017. Enhanced photocatalytic degradation of methylene blue dye under UV-sunlight irradiation by cesium doped chromium oxide thin films. Materials Research Bulletin, 95, 152-162.
  • [49] Park D., Nam D., Jung S., An S., Gwak J., Yoon K., Yun J. H., Cheong H. 2011. Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation. Thin Solid Films, 519(21), 7386-7389.
  • [50] Chen L. J., Chuang Y. J. 2013. Diethylenetriamine assisted synthesis and characterization of stannite quaternary semiconductor Cu2ZnSnSe4 nanorods by self-assembly. Journal of Crystal Growth, 376, 11-16.
There are 50 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Condensed Matter Physics (Other)
Journal Section Articles
Authors

Duygu Takanoğlu Bulut 0000-0001-6691-7813

Koray Yılmaz 0000-0002-7724-4068

Orhan Karabulut 0000-0001-9406-8441

Project Number Pamukkale University- Scientific Research Project Center (PAU-BAP)- Project number 2013FBE021.
Publication Date August 25, 2025
Submission Date April 11, 2025
Acceptance Date July 1, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Takanoğlu Bulut, D., Yılmaz, K., & Karabulut, O. (2025). Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 397-406. https://doi.org/10.19113/sdufenbed.1674189
AMA Takanoğlu Bulut D, Yılmaz K, Karabulut O. Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization. J. Nat. Appl. Sci. August 2025;29(2):397-406. doi:10.19113/sdufenbed.1674189
Chicago Takanoğlu Bulut, Duygu, Koray Yılmaz, and Orhan Karabulut. “Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 397-406. https://doi.org/10.19113/sdufenbed.1674189.
EndNote Takanoğlu Bulut D, Yılmaz K, Karabulut O (August 1, 2025) Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 397–406.
IEEE D. Takanoğlu Bulut, K. Yılmaz, and O. Karabulut, “Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 397–406, 2025, doi: 10.19113/sdufenbed.1674189.
ISNAD Takanoğlu Bulut, Duygu et al. “Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 397-406. https://doi.org/10.19113/sdufenbed.1674189.
JAMA Takanoğlu Bulut D, Yılmaz K, Karabulut O. Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization. J. Nat. Appl. Sci. 2025;29:397–406.
MLA Takanoğlu Bulut, Duygu et al. “Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 397-06, doi:10.19113/sdufenbed.1674189.
Vancouver Takanoğlu Bulut D, Yılmaz K, Karabulut O. Annealing Effects on Cu₂ZnSnSe₄ Thin Films: Structural, Electrical, and Optical Characterization. J. Nat. Appl. Sci. 2025;29(2):397-406.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.