Research Article
BibTex RIS Cite

Tabakalar Arasına Yerleştirilen Farklı FRP Türlerinin Lamine Kerestelerin Eğilme Özellikleri Üzerine Etkisi

Year 2025, Volume: 29 Issue: 2, 474 - 482, 25.08.2025
https://doi.org/10.19113/sdufenbed.1674454

Abstract

Özet: Ahşap, doğal, yenilenebilir ve sürdürülebilir bir malzeme olarak yapı sektöründe yaygın biçimde kullanılmaktadır. Az işlem gerektirmesi, düşük atık üretimi ve çevre dostu oluşu gibi özellikleriyle ön plana çıkmaktadır. Gelişen teknolojiyle birlikte özellikle yapısal amaçlı kullanımı artmaktadır. Tabakalı lamine kereste, lif yönüne paralel olarak birleştirilmiş ahşap katmanlardan oluşan endüstriyel bir üründür. Ahşap yapılar zamanla onarım ve güçlendirmeye ihtiyaç duymaktadır. Geleneksel yöntemler çelik veya alüminyum plakalar, ahşap yamalar gibi uygulamalar içermektedir ancak bu yöntemler hem maliyetli hem de her durumda etkili değildir. Bu noktada fiber takviyeli polimer (FRP) kompozitler alternatif bir çözüm sunmaktadır. FRP’ler yüksek mukavemet ve sertlik-ağırlık oranları, düşük bakım maliyeti ve kolay kurulum avantajlarına sahiptir. Ahşap yapıların FRP ile güçlendirilmesine yönelik çalışmalar genellikle kirişlerin eğilme dayanımı üzerinde yoğunlaşmıştır. Bu projede, ladin odunundan üretilmiş tabakalı lamine kereste kirişler, karbon, cam ve aramid fiber takviyeleri ile güçlendirilmiş ve eğilme davranışları incelenmiştir. Sonuçlar, karbon fiber takviyeli polimerlerin en yüksek performansı sağladığını göstermektedir. Cam ve aramid fiberler belirli iyileştirmeler göstermektedir ancak eğilme özelliklerinin geliştirilmesinde karbon fiber takviyeli polimerler kadar etkili olmadığı belirlenmiştir. Bu da, yapı elemanlarında kullanılacak takviye malzemesinin, hedeflenen performans özelliklerine göre dikkatle seçilmesi gerektiğini ortaya koymaktadır.

References

  • [1] Fengel, D., Wegener, G. 1984. Wood: chemistry, ultrastructure, reactions. Berlin and New York: De Gruyter Press.
  • [2] Guo, J., Song, K., Salmén, L., Yin, Y. 2015. Change soft wood cellwalls in response to hygro-mechanical steam treatment. CarbohydrPolym, 115: 207–14.
  • [3] Florian, M.L.E. 1990. Scope and history of archaeological wood. In:Rowell R M, Barbour R J, editors. Archaeol. Wood Prop. Chem. Preserv. Washington, D. C: American Chemical Society; 3–32
  • [4] Lippke, B.R., Bowyer, J., MeilJ. 2004. CORRIM : life‐cycle environmental perfor‐ mance, (June 2014).
  • [5] Nepal, P., Skog, K.E., Mckeever, D.B., Bergman, R.D. 2016. Abt KL, Abt RC. Carbon mitigation impacts of increased softwood lumber and structural panel use for nonresidential construction in the United States. Forest Prod J, 66(1–2):77–87.
  • [6] Amiri, A., Ottelin, J., Sorvari, J., Junnila, S. 2020. Cities as carbon sinks: classification of wooden buildings. Environmental Research Letters.
  • [7] Leskinen, P., Cardellini, G., González García, S., Hurmekoski, E., Sathre, R., Seppälä, J., et al. 2018. Substitution effects of wood-based products in climate change mitigation. From Science to Policy, 7(November), 28.
  • [8] Gutowski, T. G., Sahni, S., Allwood, J. M., Ashby, M. F., Worrell, E. 2013. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
  • [9] Van Ruijven, B. J., Van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., Patel, M. K. 2016. Long-term model-based projections of energy use and CO₂ emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, 15–36.
  • [10] Yang, T.-H., Wang, S.-Y., Tsai, M.-J., Lin, C.-Y. 2009. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment, 44(2), 231–236.
  • [11] Issa, C. A., Kmeid, Z. 2005. Advanced wood engineering: glulam beams. Construction and Building Materials, 19(2), 99–106.
  • [12] Madhoushi, M., Ansell, M. P. 2004. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. International Journal of Adhesion and Adhesives, 24(4), 319–325.
  • [13] Guan, Z. W., Rodd, P. D., Pope, D. J. 2005. Study of glulam beams pre-stressed with pultruded GRP. Computers and Structures, 83(28-30), 2476–2487.
  • [14] Zhang, J., Hu, X., Sun, Q., Zhang, Y., Zhu, W., Li, L. 2020. Experimental study on seismic performance of glulam-concrete composite beam-to-column joints. Composite Structures, 236, 111864.
  • [15] Wang, M., Song, X., Gu, X., Zhang, Y., Luo, L. 2015. Rotational behavior of bolted beam-to-column connections with locally cross-laminated glulam. Journal of Structural Engineering, 141(4), 04014121.
  • [16] Bulleit, W. M., Sandberg, L. B., Woods, G. J. 1989. Steel-reinforced glued laminated timber. Journal of Structural Engineering, ASCE, 115(2), 433–444.
  • [17] Daniel, H., Habashneh, M., Rad, M. M. 2022. Reliability-based numerical analysis of glulam beams reinforced by CFRP plate. Scientific Reports, 12(1), 13587.
  • [18] He, M. J., Wang, Y. X., Li, Z., Zhou, L. A., Tong, Y. C., Sun, X. F. 2022. An experimental and analytical study on the bending performance of CFRP-reinforced glulam beams. Frontiers in Materials, 8, 802249.
  • [19] Isleyen, U. K., Ghoroubi, R., Mercimek, O., Anil, O., Erdem, R. T. 2021. Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading. Journal of Reinforced Plastics and Composites, 40(17-18), 665–685.
  • [20] Biscaia, H. C., Chastre, C., Borba, I. S., Silva, C., Cruz, D. 2016. Experimental evaluation of bonding between CFRP laminates and different structural materials. Journal of Composites for Construction, 20(3).
  • [21] Daniel, H., Habashneh, M., Rad, M. M. 2022. Reliability-based numerical analysis of glulam beams reinforced by CFRP plate. Scientific Reports, 12(1), 13587.
  • [22] Dong, Z. Q., Wu, G., Zhao, X. L., Zhu, H., Shao, X. X. 2019. Behaviors of hybrid beams composed of seawater sea-sand concrete (SWSSC) and a prefabricated UHPC shell reinforced with FRP bars. Construction and Building Materials, 213, 32–42.
  • [23] Gomez, S., Svecova, D. 2008. Behavior of split timber stringers reinforced with external GFRP sheets. Journal of Composites for Construction, 12(2), 202–211.
  • [24] Hay, S., Thiessen, K., Svecova, D., Bakht, B. 2006. Effectiveness of GFRP sheets for shear strengthening of timber. Journal of Composites for Construction, 10(6), 483–491.
  • [25] He, M. J., Wang, Y. X., Li, Z., Zhou, L. A., Tong, Y. C., Sun, X. F. 2022. An experimental and analytical study on the bending performance of CFRP-reinforced glulam beams. Frontiers in Materials, 8, 802249.
  • [26] Kilincarslan, S., Şimşek Türker, Y. 2021. Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262.
  • [27] Kilincarslan, S., Şimşek Türker, Y. 2019. The Effect of Strengthening With Fiber Reinforced Polymers on Strength Properties of Wood Beams. 2nd International Turkish World Engineering and Science Congress, pp. 8-14.
  • [28] Cheng, F., Hu, Y. 2011. Nondestructive test and prediction of MOE of FRP reinforced fast-growing poplar glulam. Composites Science and Technology, 71(8), 1163–1170.
  • [29] Corradi, M., et al. 2021. Local FRP reinforcement of existing timber beams. Composite Structures, 258, 113363.
  • [30] Donadon, B. F., et al. 2020. Experimental investigation of glued-laminated timber beams with vectran-FRP reinforcement. Engineering Structures, 202, 123–134.
  • [31] Mizuta, Y., et al. 2019. Bending stiffness and strength of reinforcement arrangements for CFRP reinforced glulam (AFRW). Mokuzai Gakkaishi, 65(3), 148–157.
  • [32] Simsek Turker, Y., Kilincarslan, S., and Avcar, M. 2024. Enhancement of mechanical properties in FRP-reinforced glulam column-beam connections: a FEM approach. GeoStruct Innovations, 2(1), 10–20.
  • [33] Tajik, N., et al. 2024. Explainable XGBoost machine learning model for prediction of ultimate load and free end slip of GFRP rod glued-in timber joints through a pull-out test under various harsh environmental conditions. Asian Journal of Civil Engineering, 25(1), 141–157.
  • [34] Lopez-Anido, R., Michael, A., Sandford, T.C. 2003. Experimental characterization of FRP composite wood pile structural response by bending tests. Mar Struct, 16, 257, 74.
  • [35] Micelli, F., Scialpi, V., La Tegola, A. 2005. Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. Journal of Composites for Construction, 4(9), 337–347.
  • [36] De Lorenzis, L., Scialpi, V., La Tegola, A. 2005. Analytical and experimental study on bonded-in CFRP bars in glulam wood. Composite Part B: Engineering, 36(4), 279–289.
  • [37] Johnsson, H., Blanksvard, T., Carolin, A. 2006. Glulam members strengthened by carbon fibre reinforcement. Materials and Structures, 40, 47–56.
  • [38] Gentry, T. R. 2011. Performance of glued-laminated timbers with FRP shear and flexural reinforcement. Journal of Composites for Construction, 15(5), 861–870.
  • [39] Gilfillan, J. R., Gilbert, S. G., Patrick, G. R. H. 2003. The use of FRP composites in enhancing the structural behavior of timber beams. J Reinf Plastics Compos, 22(15), 1373–1388.
  • [40] Ghoroubi, R., et al. 2022. Experimental investigation of bonding behavior of anchorage timber-to-timber joint. Archives of Civil and Mechanical Engineering, 22, 1–16.
  • [41] Isleyen, U.K., et al. 2023. Investigation of impact behavior of glulam beam strengthened with CFRP. Structures, 51, 196–214. [42] Deutsches Institut für Normung. 2008. DIN 1052:2008-12: Design of timber structures – General rules and rules for buildings. Beuth Verlag.
  • [43] Unalteknik. 2023. Unalteknik ürün kataloğu 2023. https://www.ünalteknik.com/. Ünalteknik Yayınları.
  • [44] GB/T 26899-2011. 2011. Standardization Administration of China. GB/T 26899-2011: General code for design of timber structures. China Standards Press.
  • [45] Gao, Y., Zhang, L., Chen, H., Li, X. 2015. Structural performance of modern timber buildings under seismic loads. Journal of Structural Engineering, 141(4), 04014123.
  • [46] Karaman, A. 2021. Bending moment resistance of t-type joints reinforced with basalt and glass woven fabric materials. Maderas. Ciencia y tecnología, 23.
  • [47] Karaman, A., Yildirim, M. N., Tor, O. 2021. Bending characteristics of laminated wood composites constructed with black pine wood and aramıd fiber reinforced fabric. Wood Research, 66(2), 309-320.
  • [48] Karaman, A. (2024). Determination of air-dry density and compression strength parallel to the grains of basalt fiber-reinforced polymer (BFRP) woven fabrics and plaster mesh (PSM) reinforced glued laminated oak lumber. Turkish Journal of Forest Science, 8(1), 42-52.
  • [49] Yıldırım, M. N., Tor, Ö., Karaman, A. (2018). The bending moment resistance of corner joints reinforced with glass fiber polymer. Kastamonu University Journal of Forestry Faculty, 18(3), 350-356.
  • [50] Karaman, A., Yıldırım, M. N. (2021). Effects of wood species of the dowels and fiber woven fabric types on bending moment resistance of l-shaped joints. Wood Industry and Engineering, 3(2), 12-22.
  • [51] Yildrim, M. N., Karaman, A., Zor, M. (2021). Bending characteristics of laminated wood composites made of poplar wood and GFRP. Drvna Industrija, 72(1), 3-11.

Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber

Year 2025, Volume: 29 Issue: 2, 474 - 482, 25.08.2025
https://doi.org/10.19113/sdufenbed.1674454

Abstract

Abstract: Wood is widely used in the construction sector as a natural, renewable, and sustainable material. It stands out with its features such as requiring little processing, low waste production and being environmentally friendly. Its use, especially for structural purposes, is increasing with developing technology. Laminated laminated timber is an industrial product consisting of wood layers combined parallel to the grain direction. Wooden structures need repair and reinforcement over time. Traditional methods include applications such as steel or aluminum plates and wood patches, but these methods are both costly and ineffective in all cases. At this point, fiber-reinforced polymer (FRP) composites offer an alternative solution. FRPs have the advantages of high strength and stiffness-to-weight ratios, low maintenance costs, and easy installation. Studies on strengthening wooden structures with FRP have generally focused on the bending strength of beams. In this project, laminated timber beams produced from spruce wood were strengthened with carbon, glass, and aramid fiber reinforcements, and their bending behaviors were examined. The results show that carbon fiber-reinforced polymers provide the highest performance. Glass and aramid fibers show certain improvements but have not been found to be as effective as carbon fiber-reinforced polymers in improving flexural properties. This suggests that the reinforcement material to be used in structural elements should be carefully selected according to the targeted performance characteristics.

References

  • [1] Fengel, D., Wegener, G. 1984. Wood: chemistry, ultrastructure, reactions. Berlin and New York: De Gruyter Press.
  • [2] Guo, J., Song, K., Salmén, L., Yin, Y. 2015. Change soft wood cellwalls in response to hygro-mechanical steam treatment. CarbohydrPolym, 115: 207–14.
  • [3] Florian, M.L.E. 1990. Scope and history of archaeological wood. In:Rowell R M, Barbour R J, editors. Archaeol. Wood Prop. Chem. Preserv. Washington, D. C: American Chemical Society; 3–32
  • [4] Lippke, B.R., Bowyer, J., MeilJ. 2004. CORRIM : life‐cycle environmental perfor‐ mance, (June 2014).
  • [5] Nepal, P., Skog, K.E., Mckeever, D.B., Bergman, R.D. 2016. Abt KL, Abt RC. Carbon mitigation impacts of increased softwood lumber and structural panel use for nonresidential construction in the United States. Forest Prod J, 66(1–2):77–87.
  • [6] Amiri, A., Ottelin, J., Sorvari, J., Junnila, S. 2020. Cities as carbon sinks: classification of wooden buildings. Environmental Research Letters.
  • [7] Leskinen, P., Cardellini, G., González García, S., Hurmekoski, E., Sathre, R., Seppälä, J., et al. 2018. Substitution effects of wood-based products in climate change mitigation. From Science to Policy, 7(November), 28.
  • [8] Gutowski, T. G., Sahni, S., Allwood, J. M., Ashby, M. F., Worrell, E. 2013. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
  • [9] Van Ruijven, B. J., Van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., Patel, M. K. 2016. Long-term model-based projections of energy use and CO₂ emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, 15–36.
  • [10] Yang, T.-H., Wang, S.-Y., Tsai, M.-J., Lin, C.-Y. 2009. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment, 44(2), 231–236.
  • [11] Issa, C. A., Kmeid, Z. 2005. Advanced wood engineering: glulam beams. Construction and Building Materials, 19(2), 99–106.
  • [12] Madhoushi, M., Ansell, M. P. 2004. Experimental study of static and fatigue strengths of pultruded GFRP rods bonded into LVL and glulam. International Journal of Adhesion and Adhesives, 24(4), 319–325.
  • [13] Guan, Z. W., Rodd, P. D., Pope, D. J. 2005. Study of glulam beams pre-stressed with pultruded GRP. Computers and Structures, 83(28-30), 2476–2487.
  • [14] Zhang, J., Hu, X., Sun, Q., Zhang, Y., Zhu, W., Li, L. 2020. Experimental study on seismic performance of glulam-concrete composite beam-to-column joints. Composite Structures, 236, 111864.
  • [15] Wang, M., Song, X., Gu, X., Zhang, Y., Luo, L. 2015. Rotational behavior of bolted beam-to-column connections with locally cross-laminated glulam. Journal of Structural Engineering, 141(4), 04014121.
  • [16] Bulleit, W. M., Sandberg, L. B., Woods, G. J. 1989. Steel-reinforced glued laminated timber. Journal of Structural Engineering, ASCE, 115(2), 433–444.
  • [17] Daniel, H., Habashneh, M., Rad, M. M. 2022. Reliability-based numerical analysis of glulam beams reinforced by CFRP plate. Scientific Reports, 12(1), 13587.
  • [18] He, M. J., Wang, Y. X., Li, Z., Zhou, L. A., Tong, Y. C., Sun, X. F. 2022. An experimental and analytical study on the bending performance of CFRP-reinforced glulam beams. Frontiers in Materials, 8, 802249.
  • [19] Isleyen, U. K., Ghoroubi, R., Mercimek, O., Anil, O., Erdem, R. T. 2021. Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading. Journal of Reinforced Plastics and Composites, 40(17-18), 665–685.
  • [20] Biscaia, H. C., Chastre, C., Borba, I. S., Silva, C., Cruz, D. 2016. Experimental evaluation of bonding between CFRP laminates and different structural materials. Journal of Composites for Construction, 20(3).
  • [21] Daniel, H., Habashneh, M., Rad, M. M. 2022. Reliability-based numerical analysis of glulam beams reinforced by CFRP plate. Scientific Reports, 12(1), 13587.
  • [22] Dong, Z. Q., Wu, G., Zhao, X. L., Zhu, H., Shao, X. X. 2019. Behaviors of hybrid beams composed of seawater sea-sand concrete (SWSSC) and a prefabricated UHPC shell reinforced with FRP bars. Construction and Building Materials, 213, 32–42.
  • [23] Gomez, S., Svecova, D. 2008. Behavior of split timber stringers reinforced with external GFRP sheets. Journal of Composites for Construction, 12(2), 202–211.
  • [24] Hay, S., Thiessen, K., Svecova, D., Bakht, B. 2006. Effectiveness of GFRP sheets for shear strengthening of timber. Journal of Composites for Construction, 10(6), 483–491.
  • [25] He, M. J., Wang, Y. X., Li, Z., Zhou, L. A., Tong, Y. C., Sun, X. F. 2022. An experimental and analytical study on the bending performance of CFRP-reinforced glulam beams. Frontiers in Materials, 8, 802249.
  • [26] Kilincarslan, S., Şimşek Türker, Y. 2021. Experimental investigation of the rotational behaviour of glulam column-beam joints reinforced with fiber reinforced polymer composites. Composite Structures, 262.
  • [27] Kilincarslan, S., Şimşek Türker, Y. 2019. The Effect of Strengthening With Fiber Reinforced Polymers on Strength Properties of Wood Beams. 2nd International Turkish World Engineering and Science Congress, pp. 8-14.
  • [28] Cheng, F., Hu, Y. 2011. Nondestructive test and prediction of MOE of FRP reinforced fast-growing poplar glulam. Composites Science and Technology, 71(8), 1163–1170.
  • [29] Corradi, M., et al. 2021. Local FRP reinforcement of existing timber beams. Composite Structures, 258, 113363.
  • [30] Donadon, B. F., et al. 2020. Experimental investigation of glued-laminated timber beams with vectran-FRP reinforcement. Engineering Structures, 202, 123–134.
  • [31] Mizuta, Y., et al. 2019. Bending stiffness and strength of reinforcement arrangements for CFRP reinforced glulam (AFRW). Mokuzai Gakkaishi, 65(3), 148–157.
  • [32] Simsek Turker, Y., Kilincarslan, S., and Avcar, M. 2024. Enhancement of mechanical properties in FRP-reinforced glulam column-beam connections: a FEM approach. GeoStruct Innovations, 2(1), 10–20.
  • [33] Tajik, N., et al. 2024. Explainable XGBoost machine learning model for prediction of ultimate load and free end slip of GFRP rod glued-in timber joints through a pull-out test under various harsh environmental conditions. Asian Journal of Civil Engineering, 25(1), 141–157.
  • [34] Lopez-Anido, R., Michael, A., Sandford, T.C. 2003. Experimental characterization of FRP composite wood pile structural response by bending tests. Mar Struct, 16, 257, 74.
  • [35] Micelli, F., Scialpi, V., La Tegola, A. 2005. Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods. Journal of Composites for Construction, 4(9), 337–347.
  • [36] De Lorenzis, L., Scialpi, V., La Tegola, A. 2005. Analytical and experimental study on bonded-in CFRP bars in glulam wood. Composite Part B: Engineering, 36(4), 279–289.
  • [37] Johnsson, H., Blanksvard, T., Carolin, A. 2006. Glulam members strengthened by carbon fibre reinforcement. Materials and Structures, 40, 47–56.
  • [38] Gentry, T. R. 2011. Performance of glued-laminated timbers with FRP shear and flexural reinforcement. Journal of Composites for Construction, 15(5), 861–870.
  • [39] Gilfillan, J. R., Gilbert, S. G., Patrick, G. R. H. 2003. The use of FRP composites in enhancing the structural behavior of timber beams. J Reinf Plastics Compos, 22(15), 1373–1388.
  • [40] Ghoroubi, R., et al. 2022. Experimental investigation of bonding behavior of anchorage timber-to-timber joint. Archives of Civil and Mechanical Engineering, 22, 1–16.
  • [41] Isleyen, U.K., et al. 2023. Investigation of impact behavior of glulam beam strengthened with CFRP. Structures, 51, 196–214. [42] Deutsches Institut für Normung. 2008. DIN 1052:2008-12: Design of timber structures – General rules and rules for buildings. Beuth Verlag.
  • [43] Unalteknik. 2023. Unalteknik ürün kataloğu 2023. https://www.ünalteknik.com/. Ünalteknik Yayınları.
  • [44] GB/T 26899-2011. 2011. Standardization Administration of China. GB/T 26899-2011: General code for design of timber structures. China Standards Press.
  • [45] Gao, Y., Zhang, L., Chen, H., Li, X. 2015. Structural performance of modern timber buildings under seismic loads. Journal of Structural Engineering, 141(4), 04014123.
  • [46] Karaman, A. 2021. Bending moment resistance of t-type joints reinforced with basalt and glass woven fabric materials. Maderas. Ciencia y tecnología, 23.
  • [47] Karaman, A., Yildirim, M. N., Tor, O. 2021. Bending characteristics of laminated wood composites constructed with black pine wood and aramıd fiber reinforced fabric. Wood Research, 66(2), 309-320.
  • [48] Karaman, A. (2024). Determination of air-dry density and compression strength parallel to the grains of basalt fiber-reinforced polymer (BFRP) woven fabrics and plaster mesh (PSM) reinforced glued laminated oak lumber. Turkish Journal of Forest Science, 8(1), 42-52.
  • [49] Yıldırım, M. N., Tor, Ö., Karaman, A. (2018). The bending moment resistance of corner joints reinforced with glass fiber polymer. Kastamonu University Journal of Forestry Faculty, 18(3), 350-356.
  • [50] Karaman, A., Yıldırım, M. N. (2021). Effects of wood species of the dowels and fiber woven fabric types on bending moment resistance of l-shaped joints. Wood Industry and Engineering, 3(2), 12-22.
  • [51] Yildrim, M. N., Karaman, A., Zor, M. (2021). Bending characteristics of laminated wood composites made of poplar wood and GFRP. Drvna Industrija, 72(1), 3-11.
There are 50 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Yasemin Şimşek Türker 0000-0002-3080-0215

Şemsettin Kılınçarslan 0000-0001-8253-9357

Simla Ünal 0009-0006-7628-4259

Publication Date August 25, 2025
Submission Date April 11, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Şimşek Türker, Y., Kılınçarslan, Ş., & Ünal, S. (2025). Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 474-482. https://doi.org/10.19113/sdufenbed.1674454
AMA Şimşek Türker Y, Kılınçarslan Ş, Ünal S. Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber. J. Nat. Appl. Sci. August 2025;29(2):474-482. doi:10.19113/sdufenbed.1674454
Chicago Şimşek Türker, Yasemin, Şemsettin Kılınçarslan, and Simla Ünal. “Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 474-82. https://doi.org/10.19113/sdufenbed.1674454.
EndNote Şimşek Türker Y, Kılınçarslan Ş, Ünal S (August 1, 2025) Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 474–482.
IEEE Y. Şimşek Türker, Ş. Kılınçarslan, and S. Ünal, “Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 474–482, 2025, doi: 10.19113/sdufenbed.1674454.
ISNAD Şimşek Türker, Yasemin et al. “Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 474-482. https://doi.org/10.19113/sdufenbed.1674454.
JAMA Şimşek Türker Y, Kılınçarslan Ş, Ünal S. Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber. J. Nat. Appl. Sci. 2025;29:474–482.
MLA Şimşek Türker, Yasemin et al. “Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 474-82, doi:10.19113/sdufenbed.1674454.
Vancouver Şimşek Türker Y, Kılınçarslan Ş, Ünal S. Effect of Different Types of FRP Placed Between Layers on Flexural Properties of Laminated Timber. J. Nat. Appl. Sci. 2025;29(2):474-82.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.