Investigation Of The Antibiofilm Effects Of Cell-free Supernatants Of Probiotic Bacteria Against The Biofilm Formed By Bacteria Obtained From The Ocular Surface
Yıl 2022,
, 432 - 440, 20.12.2022
Sertaç Argun Kıvanç
,
Berna Akova Budak
,
Merih Kıvanç
Öz
Objective: The aim of this study was to investigate the antibiofilm activity of the acellular filtrates of probiotic lactic acid bacteria on the biofilm produced by Listeria monocytogenes, Pseudomonas putida, Pseudomonas stutzeri, Stenotrophomonas maltophilia and Staphyloccocus epidermidis, isolated from the ocular surface.
Material-Method: Lactobacillus rhamnosus 1743, Lactobacillus plantarum1771, Lactobacillus rhamnosus 3111, L. rhamnosus KA1 and L. rhamnosus 1724 were used as lactic acid bacteria. The purity of both lactic acid bacteria and pathogenic test bacteria was checked before use. Cell-free supernatant of lactic acid bacteria were passed through a 22µm filter. For the antibiofilm effect of the acellular filtrate, test pathogenic bacteria cultured in TSB medium were dispersed into the wells. After washing the wells, biofilm formation was evaluated spectrophotometrically at 570 nm according to optical density.
Results: It was observed that acellular filtrates obtained from lactic acid bacteria inhibited biofilm formation at different rates in different test bacteria. The L. rhamnosus KA1 acellular filtrate was the filtrate that reduced the biofilms of all tested bacteria at most. It was also determined that the filtrates of lactic acid bacteria reduced the biofilm of P. stutzeri CZPX 23 at most.
Conclusion: Cell-free supernatants obtained from probiotic lactic acid bacteria can help prevent biofilms formed by bacteria. The effects of acellular filtrates of different lactic acid bacteria on the biofilm formed by different test bacteria may vary. Further studies are needed for the detection and efficacy of a broad-spectrum lactic acid bacteria acellular filtrates.
Kaynakça
- [1] Kam Hepdeniz, Ö., Seçkin, Ö. 2017. Dinamik mikrobiyal bir yaşam: Oral biyofilm. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 8(3): 47-55.
- [2] Kıvanç, S. A., Kıvanç, M., Kılıç, V., Güllülü, G., Özmen, A. T. 2017. Comparison of biofilm formation capacities of two clinical ısolates of Staphylococcus epidermidis with and without icaA and icaD genes on ıntraocular lenses. Turk J Ophthalmol, 47(2):68-73.
- [3] Gbejuade, H. O., Lovering, A. M., Webb, J. C. 2015. The role of microbial biofilms in prosthetic joint infections. Acta Orthop, 86(2):147-158.
- [4] Bispo, P. J., Haas, W., Gilmore, M. S. 2015. Biofilms in infections of the eye. Pathogens, 4(1):111-136.
- [5] Paranhos, R. M., Batalhão, C. H., Semprini, M., Regalo, S. C., Ito, I. Y., de Mattos Mda, G. 2007. Evaluation of ocular prosthesis biofilm and anophthalmic cavity contamination after use of three cleansing solutions. J Appl Oral Sci, 15(1):33-38.
- [6] Enoch, D. A., Birkett, C. I., Ludlam, H. A. 2007. Non-fermentative Gram-negative bacteria. Int J Antimicrob Agents, 29 Suppl 3:S33-41.
- [7] Safdar, A., Rolston, K. V. 2007. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis, 45(12):1602-1609.
- [8] Tay, E., Rajan, M., Tuft, S. 2008. Listeria monocytogenes sclerokeratitis: a case report and literature review. Cornea, 27(8):947-949.
- [9] Shoughy, S. S., Tabbara, K. F. 2014. Listeria monocytogenes endophthalmitis following keratoconjunctivitis. Clin Ophthalmol, 8:301-304.
- [10] Mahdhi, A., Leban, N., Chakroun, I., Bayar, S., Mahdouani, K., Majdoub, H., Kouidhi, B. 2018. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog, 125:448-453.
- [11] Akova, B., Kıvanç, S. A., Kıvanç, M. 2021. Antibiofilm effect of probiotic lactic acid bacteria against Bacillus spp obtained from the ocular surface. Eur Rev Med Pharmacol Sci, 25(24):7799-805.
- [12] Camargo, A. C, de Paula, O. A, Todorov, S. D, Nero, L. A. 2016. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl Biochem Biotechnol, 178(6):1239-1251.
- [13] Fariq, A., Saeed, A. 2016. Production and biomedical applications of probiotic biosurfactants. Curr Microbiol, 72(4):489-495.
- [14] Gudiña E. J., Teixeira J. A., Rodrigues L. R. 2010. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces, 76(1):298-304.
- [15] Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H., Tobji, S., Ben Amor, A., Mastouri, M. 2017. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog, 104:84-89.
- [16] Mathur, H., Field, D., Rea, M. C., Cotter, P.D., Hill, C., Ross, R. P. 2018. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes, 4:9.
- [17] Makovcova, J., Babak, V., Kulich, P., Masek, J., Slany, M., Cincarova, L. 2017. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microb Biotechnol, 10(4):819-832.
- [18] Nadell, C. D., Drescher, K., Foster, K. R. 2016. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol, 14(9):589-600.
- [19] Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. 2002. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 40(2):175-179.
- [20] Carminati, D., Giraffa, G., Bossi, M. G. 1989. Bacteriocin-Like Inhibitors of Streptococcus lactis against Listeria monocytogenes. J Food Prot, 52(9):614-617.
- [21] Prince, A. S. 2002. Biofilms, antimicrobial resistance, and airway infection. N Engl J Med, 347(14):1110-1111.
- [22] El-Mokhtar, M., Hassanein, K. M., Ahmed, A. S., Gad, G. F. M., Amin, M. M., Hassanein, O. F. E. 2020. Antagonistic activities of cell-free supernatants of lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect and Drug Resist, 13: 543–552.
- [23] Forestier, C., De Champs, C., Vatoux, C., Joly, B. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol. 152(2):167–173.
- [24] Muhammad, Z., Ramzan, R., Abdelazez, A., Amjad, A., Afzaal, M., Zhang, S., Pan, S. 2019. Assessment of the antimicrobial potentiality and functionality of Lactobacillus plantarum strains ısolated from the conventional ınner Mongolian Fermented Cheese Against Foodborne Pathogens. Pathogens, 8(2):71.
- [25] Jamalifar, H., Rahimi, H., Samadi, N., Shahverdi, A., Sharifian, Z., Hosseini, F., Eslahi, F., Fazeli, M. 2011. Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol, 3 (1):21–25.
- [26] Mani-Lopez, E., Arrioja-Bretón, D., López-Malo, A.,2022. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods . Compr Rev Food Sci Food Saf, 21:604–641.
- [27] Sornsenee, P., Chatatikun, M., Mitsuwan, W., Kongpol, K., Kooltheat, N., Sohbenalee, S., Pruksaphanrat, S., Mudpan, A., Romyasamit, C. 2021. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ, 9:e12586.
- [28] Masebe, R. D., Thantsha, M. S. 2022. Anti-biofilm activity of cell free supernatants of selected lactic acid bacteria against Listeria monocytogenes ısolated from avocado and cucumber fruits, and from an avocado processing plant. Foods, 11(18):2872.
- [29] Bagge, N., Schuster, M., Hentzer, M., Ciofu, O., Givskov, M., Greenberg, E. P., Høiby, N. 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother, 48(4):1175-1187.
- [30] Liu, C., Sun, D., Zhu, J., Liu, J., Liu, W. 2020. The regulation of bacterial biofilm formation by cAMP-CRP: A Mini-Review. Front Microbiol, 11:802.
- [31] Ding, X. S., Zhao, B., An, Q., Tian, M., Guo, J. S. 2019. Role of extracellular polymeric substances in biofilm formation by Pseudomonas stutzeri strain XL-2. Appl Microbiol Biotechnol, 103(21-22):9169-9180.
- [32] Yan, N., Yang, Z., Shang, L., Dai, S., Zhan, Y., Lu, W., Lin, M., Yan, Y. 2017. Patterns of Biofilm formation in Pseudomonas stutzei Under abiotic stresses. Biotechnology Bulletin, 33(2): 172-178.
- [33] Rezaei, Z., Khanzadi, S., Salari, A. 2021. Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express, 11(1):156.
- [34] Jeyanathan, A., Ramalhete, R., Blunn, G., Gibbs, H., Pumilia, C. A., Meckmongkol, T., Lovejoy, J., Coathup, M. J. 2021. Lactobacillus cell-free supernatant as a novel bioagent and biosurfactant against Pseudomonas aeruginosa in the prevention and treatment of orthopedic implant infection. J Biomed Mater Res B Appl Biomater, 109(10):1634-1643.
- [35] Sharma, S., Chinyadza, T., Chapnick, E. K., Ghitan, M. 2008. Stenotrophomonas maltophilia infection during treatment for pancreatitis with imipenem/cilastatin. Clin.Microbiol.Newsletters, 30:12-3
- [36] Sun, E., Liang, G., Wang, L., Wei, W., Lei, M., Song, S., Han, R., Wang, Y., Qi, W. 2016. Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms. Braz J Infect Dis, 20(4):365-373.
- [37] Horio, N., Horiguchi, M., Murakami, K., Yamamoto, E., Miyake, Y. 2000. Stenotrophomonas maltophilia endophthalmitis after intraocular lens implantation. Graefes Arch Clin Exp Ophthalmol, 238(4):299-301.
- [38] Karakurt, A., Abdik, O., Sengün, A., Karadağ, R., Saricaoğlu, S., Sarikatipoğlu, H. Y., Hasiripi, H. 2006 Stenotrophomonas maltophilia Endophthalmitis after cataract extraction. Ocul Immunol Inflamm,14(1):41-46.
- [39] Park, B. C., Lim, H. R., Park, S. J., Koh, J. W. 2021. Clinical features and management of Stenotrophomonas maltophilia keratitis. Ophthalmol Ther, 10(3):525-533.
- [40] Jucker, B. A., Harms, H., Zehnder, A. J. 1996. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol, 178(18):5472-5479.
- [41] Katiyar, R., Vishwakarma, A., Kaistha, S. D. 2012. Analysis of biofilm formation and antibiotic resistance of microbial isolates from intraocular lens following conventional extracapsular cataract surgery. Int J Res Pure Appl Microbiol. 2(2):20–24.
- [42] Kivanc, S. A., Kilic, V., Akova, B., Kivanc, M. 2020. The biofilm formation properties of the S. epidermidis isolates obtained from conjunctiva and multi-drug resistance. Kuwait Medical Journal, 52:143-150.
- [43] Frickmann, H., Klenk, C., Warnke, P., Redanz, S., Podbielski, A. 2018. Influence of probiotic culture supernatants on ın vitro biofilm formation of Staphylococci. Eur J Microbiol Immunol (Bp), 8(4):119-127.
- [44] Altaie, R., Fahy, G. T., Cormican, M. 2006. Failure of Listeria monocytogenes keratitis to respond to topical ofloxacin. Cornea, 25(7):849-850.
- [45] Gaskell, K. M., Williams, G., Grant, K., Lightman, S., Godbole, G. 2017. Listeria Monocytogenes: a rare cause of endophthalmitis, a case report. IDCases, 8:45-46.
- [46] Hossain, M. I., Mizan, M. F. R., Ashrafudoulla, M., Nahar, S., Joo, H.-J., Jahid, I. K., Park, S. H., Kim, K.-S., Ha, S.-D. 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT-Food Science and Technology, 118, Article 108864.
- [47] Patel, M., Siddiqui, A.J., Ashraf, S.A., Surti, M.; Awadelkareem, A.M.; Snoussi, M.; Hamadou, W.S.; Bardakci, F.; Jamal, A.; Jahan, S.; et al. Lactiplantibacillus plantarum-derived biosurfactant attenuates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022, 10, 1026.
Göz Yüzeyinden Elde Edilen Bakterilerin Oluşturduğu Biyofilme Karşı Probiyotik Bakterilerin Hücresiz Filtratlarının Antibiyofilm Etkilerinin Araştırılması
Yıl 2022,
, 432 - 440, 20.12.2022
Sertaç Argun Kıvanç
,
Berna Akova Budak
,
Merih Kıvanç
Öz
Amaç: Bu çalışmanın amacı probiyotik laktik asit bakterilerine ait hücresiz filtratların göz yüzeyinden izole edilmiş olan Listeria monocytogenes, Pseudomonas putida, Pseudomonas stutzeri, Stenotrophomonas maltophilia ve Staphyloccocus epidermidis’in ürettikleri biyofilm üzerine antibiyofilm aktivitesinin araştırılmasıdır.
Materyal-Metot: Laktik asit bakterileri olarak Lactobacillus rhamnosus 1743, Lactobacillus plantarum1771, Lactobacillus rhamnosus 3111, L. rhamnosus KA1 ve L. rhamnosus 1724 kullanıldı. Kullanılmadan önce hem laktik asit bakterilerinin hem test bakterilerinin saflıkları kontrol edildi. Laktik asit bakterileri hücresiz filtratları 22µm’lik filtreden geçirildi. Hücresiz filtratın antibiyofilm etkisi için TSB ortamında kültüre edilen test bakterileri kuyucuklara dağıtıldı. Kuyucuklar yıkandıktan sonra 570 nm’de spektrofotometrik olarak optik yoğunluğa göre biyofilm oluşumu değerlendirildi.
Bulgular: Laktik asit bakterilerinden elde edilen hücresiz filtratların farklı test bakterilerinde farklı oranlarda biyofilm oluşumunu inhibe ettiği gözlendi. L. rhamnosus KA1’in hücresiz filtratı test edilen tüm bakterilerin biyofilmlerini ortalama en fazla azaltan filtrattı. Laktik asit bakterilerinin filtratlarının biyofilmi en çok azalttıkları test bakterisi P. stutzeri 23 CZPX olarak tespit edildi.
Sonuç: Probiyotik laktik asit bakterilerinden elde edilen hücresiz filtratlar bakterilerin oluşturduğu biyofilmlerin önlenmesinde yardımcı olabilir. Farklı LAB hücresiz filtratlarının farklı test bakterilerinin oluşturduğu biyofilme etkileri değişebilmektedir. Geniş spekturumlu bir LAB hücresiz filtratın tespiti ve etkinliği için ileri çalışmalara ihtiyaç vardır.
Kaynakça
- [1] Kam Hepdeniz, Ö., Seçkin, Ö. 2017. Dinamik mikrobiyal bir yaşam: Oral biyofilm. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 8(3): 47-55.
- [2] Kıvanç, S. A., Kıvanç, M., Kılıç, V., Güllülü, G., Özmen, A. T. 2017. Comparison of biofilm formation capacities of two clinical ısolates of Staphylococcus epidermidis with and without icaA and icaD genes on ıntraocular lenses. Turk J Ophthalmol, 47(2):68-73.
- [3] Gbejuade, H. O., Lovering, A. M., Webb, J. C. 2015. The role of microbial biofilms in prosthetic joint infections. Acta Orthop, 86(2):147-158.
- [4] Bispo, P. J., Haas, W., Gilmore, M. S. 2015. Biofilms in infections of the eye. Pathogens, 4(1):111-136.
- [5] Paranhos, R. M., Batalhão, C. H., Semprini, M., Regalo, S. C., Ito, I. Y., de Mattos Mda, G. 2007. Evaluation of ocular prosthesis biofilm and anophthalmic cavity contamination after use of three cleansing solutions. J Appl Oral Sci, 15(1):33-38.
- [6] Enoch, D. A., Birkett, C. I., Ludlam, H. A. 2007. Non-fermentative Gram-negative bacteria. Int J Antimicrob Agents, 29 Suppl 3:S33-41.
- [7] Safdar, A., Rolston, K. V. 2007. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis, 45(12):1602-1609.
- [8] Tay, E., Rajan, M., Tuft, S. 2008. Listeria monocytogenes sclerokeratitis: a case report and literature review. Cornea, 27(8):947-949.
- [9] Shoughy, S. S., Tabbara, K. F. 2014. Listeria monocytogenes endophthalmitis following keratoconjunctivitis. Clin Ophthalmol, 8:301-304.
- [10] Mahdhi, A., Leban, N., Chakroun, I., Bayar, S., Mahdouani, K., Majdoub, H., Kouidhi, B. 2018. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb Pathog, 125:448-453.
- [11] Akova, B., Kıvanç, S. A., Kıvanç, M. 2021. Antibiofilm effect of probiotic lactic acid bacteria against Bacillus spp obtained from the ocular surface. Eur Rev Med Pharmacol Sci, 25(24):7799-805.
- [12] Camargo, A. C, de Paula, O. A, Todorov, S. D, Nero, L. A. 2016. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl Biochem Biotechnol, 178(6):1239-1251.
- [13] Fariq, A., Saeed, A. 2016. Production and biomedical applications of probiotic biosurfactants. Curr Microbiol, 72(4):489-495.
- [14] Gudiña E. J., Teixeira J. A., Rodrigues L. R. 2010. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces, 76(1):298-304.
- [15] Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H., Tobji, S., Ben Amor, A., Mastouri, M. 2017. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microb Pathog, 104:84-89.
- [16] Mathur, H., Field, D., Rea, M. C., Cotter, P.D., Hill, C., Ross, R. P. 2018. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes, 4:9.
- [17] Makovcova, J., Babak, V., Kulich, P., Masek, J., Slany, M., Cincarova, L. 2017. Dynamics of mono- and dual-species biofilm formation and interactions between Staphylococcus aureus and Gram-negative bacteria. Microb Biotechnol, 10(4):819-832.
- [18] Nadell, C. D., Drescher, K., Foster, K. R. 2016. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol, 14(9):589-600.
- [19] Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic-Vlahovic, M. 2002. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods, 40(2):175-179.
- [20] Carminati, D., Giraffa, G., Bossi, M. G. 1989. Bacteriocin-Like Inhibitors of Streptococcus lactis against Listeria monocytogenes. J Food Prot, 52(9):614-617.
- [21] Prince, A. S. 2002. Biofilms, antimicrobial resistance, and airway infection. N Engl J Med, 347(14):1110-1111.
- [22] El-Mokhtar, M., Hassanein, K. M., Ahmed, A. S., Gad, G. F. M., Amin, M. M., Hassanein, O. F. E. 2020. Antagonistic activities of cell-free supernatants of lactobacilli against extended-spectrum β-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa. Infect and Drug Resist, 13: 543–552.
- [23] Forestier, C., De Champs, C., Vatoux, C., Joly, B. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res Microbiol. 152(2):167–173.
- [24] Muhammad, Z., Ramzan, R., Abdelazez, A., Amjad, A., Afzaal, M., Zhang, S., Pan, S. 2019. Assessment of the antimicrobial potentiality and functionality of Lactobacillus plantarum strains ısolated from the conventional ınner Mongolian Fermented Cheese Against Foodborne Pathogens. Pathogens, 8(2):71.
- [25] Jamalifar, H., Rahimi, H., Samadi, N., Shahverdi, A., Sharifian, Z., Hosseini, F., Eslahi, F., Fazeli, M. 2011. Antimicrobial activity of different Lactobacillus species against multi- drug resistant clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol, 3 (1):21–25.
- [26] Mani-Lopez, E., Arrioja-Bretón, D., López-Malo, A.,2022. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods . Compr Rev Food Sci Food Saf, 21:604–641.
- [27] Sornsenee, P., Chatatikun, M., Mitsuwan, W., Kongpol, K., Kooltheat, N., Sohbenalee, S., Pruksaphanrat, S., Mudpan, A., Romyasamit, C. 2021. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ, 9:e12586.
- [28] Masebe, R. D., Thantsha, M. S. 2022. Anti-biofilm activity of cell free supernatants of selected lactic acid bacteria against Listeria monocytogenes ısolated from avocado and cucumber fruits, and from an avocado processing plant. Foods, 11(18):2872.
- [29] Bagge, N., Schuster, M., Hentzer, M., Ciofu, O., Givskov, M., Greenberg, E. P., Høiby, N. 2004. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother, 48(4):1175-1187.
- [30] Liu, C., Sun, D., Zhu, J., Liu, J., Liu, W. 2020. The regulation of bacterial biofilm formation by cAMP-CRP: A Mini-Review. Front Microbiol, 11:802.
- [31] Ding, X. S., Zhao, B., An, Q., Tian, M., Guo, J. S. 2019. Role of extracellular polymeric substances in biofilm formation by Pseudomonas stutzeri strain XL-2. Appl Microbiol Biotechnol, 103(21-22):9169-9180.
- [32] Yan, N., Yang, Z., Shang, L., Dai, S., Zhan, Y., Lu, W., Lin, M., Yan, Y. 2017. Patterns of Biofilm formation in Pseudomonas stutzei Under abiotic stresses. Biotechnology Bulletin, 33(2): 172-178.
- [33] Rezaei, Z., Khanzadi, S., Salari, A. 2021. Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745). AMB Express, 11(1):156.
- [34] Jeyanathan, A., Ramalhete, R., Blunn, G., Gibbs, H., Pumilia, C. A., Meckmongkol, T., Lovejoy, J., Coathup, M. J. 2021. Lactobacillus cell-free supernatant as a novel bioagent and biosurfactant against Pseudomonas aeruginosa in the prevention and treatment of orthopedic implant infection. J Biomed Mater Res B Appl Biomater, 109(10):1634-1643.
- [35] Sharma, S., Chinyadza, T., Chapnick, E. K., Ghitan, M. 2008. Stenotrophomonas maltophilia infection during treatment for pancreatitis with imipenem/cilastatin. Clin.Microbiol.Newsletters, 30:12-3
- [36] Sun, E., Liang, G., Wang, L., Wei, W., Lei, M., Song, S., Han, R., Wang, Y., Qi, W. 2016. Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms. Braz J Infect Dis, 20(4):365-373.
- [37] Horio, N., Horiguchi, M., Murakami, K., Yamamoto, E., Miyake, Y. 2000. Stenotrophomonas maltophilia endophthalmitis after intraocular lens implantation. Graefes Arch Clin Exp Ophthalmol, 238(4):299-301.
- [38] Karakurt, A., Abdik, O., Sengün, A., Karadağ, R., Saricaoğlu, S., Sarikatipoğlu, H. Y., Hasiripi, H. 2006 Stenotrophomonas maltophilia Endophthalmitis after cataract extraction. Ocul Immunol Inflamm,14(1):41-46.
- [39] Park, B. C., Lim, H. R., Park, S. J., Koh, J. W. 2021. Clinical features and management of Stenotrophomonas maltophilia keratitis. Ophthalmol Ther, 10(3):525-533.
- [40] Jucker, B. A., Harms, H., Zehnder, A. J. 1996. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol, 178(18):5472-5479.
- [41] Katiyar, R., Vishwakarma, A., Kaistha, S. D. 2012. Analysis of biofilm formation and antibiotic resistance of microbial isolates from intraocular lens following conventional extracapsular cataract surgery. Int J Res Pure Appl Microbiol. 2(2):20–24.
- [42] Kivanc, S. A., Kilic, V., Akova, B., Kivanc, M. 2020. The biofilm formation properties of the S. epidermidis isolates obtained from conjunctiva and multi-drug resistance. Kuwait Medical Journal, 52:143-150.
- [43] Frickmann, H., Klenk, C., Warnke, P., Redanz, S., Podbielski, A. 2018. Influence of probiotic culture supernatants on ın vitro biofilm formation of Staphylococci. Eur J Microbiol Immunol (Bp), 8(4):119-127.
- [44] Altaie, R., Fahy, G. T., Cormican, M. 2006. Failure of Listeria monocytogenes keratitis to respond to topical ofloxacin. Cornea, 25(7):849-850.
- [45] Gaskell, K. M., Williams, G., Grant, K., Lightman, S., Godbole, G. 2017. Listeria Monocytogenes: a rare cause of endophthalmitis, a case report. IDCases, 8:45-46.
- [46] Hossain, M. I., Mizan, M. F. R., Ashrafudoulla, M., Nahar, S., Joo, H.-J., Jahid, I. K., Park, S. H., Kim, K.-S., Ha, S.-D. 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT-Food Science and Technology, 118, Article 108864.
- [47] Patel, M., Siddiqui, A.J., Ashraf, S.A., Surti, M.; Awadelkareem, A.M.; Snoussi, M.; Hamadou, W.S.; Bardakci, F.; Jamal, A.; Jahan, S.; et al. Lactiplantibacillus plantarum-derived biosurfactant attenuates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022, 10, 1026.