Asetilsalisilik Asit ve Salisilik Asitin Paklitaksel ile Eş Uygulamasının Prostat Kanseri Hücreleri Üzerindeki Olası Sinerjistik Etkilerinin Otofaji, ER stresi ve Apoptotik Hücre Ölümü ile İlişkisinin Araştırılması
Yıl 2023,
, 87 - 99, 15.08.2023
Yalçın Erzurumlu
,
Deniz Çataklı
,
Hatice Kübra Doğan
Öz
Prostat kanseri, dünya genelinde erkeklerde en sık görülen ikinci kanser türüdür ve kansere bağlı ölüm nedenleri arasında beşinci sırada yer almaktadır. Kemoterapötikler ve anti-androjenler prostat kanseri tedavisinde sıklıkla kullanılan yaklaşımlar olmasına karşın kazanılan ilaç direnci ve gelişen kastrasyona direnç mekanizmaları nedeniyle kullanımları sınırlanmaktadır. Bu nedenle mevcut tedavilere ait yan etkilerin giderilmesi ve hali hazırda kullanılan ajanların terapötik etkinliklerinin geliştirilebilmesi için yeni yaklaşımlara olan ihtiyaç devam etmektedir. Bu çalışma kapsamında, asetilsalisilik asit (ASA) ve salisilik asit (SA)’in tek başına veya kemoterapiye dirençli çeşitli kanser türlerinin tedavisinde sıklıkla kullanılan bir anti-mitotik ajan olan Paklitaksel ile kombine uygulamalarının prostat kanseri hücrelerinde katlanmamış protein yanıtı (UPR) sinyalinin PERK kolu, otofaji ve apoptotik hücre ölümü aracılı olası etki mekanizmaları incelendi. Bulgularımız, Paklitaksel’in ASA ve SA ile kombinasyonunun otofaji mekanizmasını uyardığını ve UPR’nin PERK kolu aktivasyonu aracılı CHOP uyarımına ve apoptotik proteinler olan kaspaz-3 ve PARP-1 kesimine neden olarak prostat kanseri hücrelerinde güçlü anti-kanser etkiler sergilediğini göstermiştir. Bu sonuçlar, prostat kanseri tedavisinde ASA ve SA’nın Paklitaksel ile kombinasyonunun Paklitaksel’in anti-kanser etkinliğini geliştirerek etkili bir tedavi yaklaşımı sunabileceğini düşündürmektedir.
Destekleyen Kurum
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
TSG-2021-8302, TAB-2020-8253
Teşekkür
Bu çalışmadaki bazı analizlerin gerçekleştirilmesinde kullanılan cihazlar ile destek veren Süleyman Demirel Üniversitesi Yenilikçi Teknolojiler Uygulama ve Araştırma Merkezi (YETEM)'ne katkılarından dolayı teşekkür ederiz.
Kaynakça
- [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 71(3), 209-249.
- [2] Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48.
- [3] Brookman-May, S. D., Campi, R., Henríquez, J. D. S., Klatte, T., Langenhuijsen, J. F., Brausi, M., Linares-Espinós, E., Volpe, A., Marszalek, M., Akdogan, B., Roll, C., Stief, C. G., Rodriguez-Faba, O., & Minervini, A. 2019. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). European Urology Focus
- [4] Crawford, E. D., Petrylak, D., & Sartor, O. 2017. Navigating the evolving therapeutic landscape in advanced prostate cancer. Urologic Oncology, 35S, S1–S13.
- [5] Patrikidou, A., Loriot, Y., Eymard, J.-C., Albiges, L., Massard, C., Ileana, E., Di Palma, M., Escudier, B., & Fizazi, K. 2014. Who dies from prostate cancer? Prostate Cancer and Prostatic Diseases, 17(4), 348–352.
- [6] Simić, A., Manojlović, D., Segan, D., & Todorović, M. 2007. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules, 12(10), 2327–2340.
- [7] Ekinci, D., Sentürk, M., & Küfrevioğlu, Ö. İ. 2011. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools. Expert Opinion on Therapeutic Patents, 21(12), 1831–1841.
- [8] Dachineni, R., Ramesh Kumar, D., Callegari, E., Kesharwani, S. S., Sankaranarayanan, R., Seefeldt, T., Jayarama Bhat, G. 2017. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. International Journal of Oncology, 51(6), 1661-1673.
- [9] Vejselova, D., & Kutlu, H. M. 2015. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turkish Journal of Biology = Turk Biyoloji Dergisi / the Scientific and Technical Research Council of Turkey, 39(1), 1–5.
- [10] Mahdi, J. G., Alkarrawi, M. A., Mahdi, A. J., Bowen, I. D., & Humam, D. 2006. Calcium salicylate-mediated apoptosis in human HT-1080 fibrosarcoma cells. Cell Proliferation. 39(4), 249-60.
- [11] Fuster, V., & Sweeny, J. M. 2011. Response to Letter Regarding Article, “Aspirin: A Historical and Contemporary Therapeutic Overview”. Circulation. 124(12).
- [12] Vane, J. R., & Botting, R. M. 1996. The history of anti-inflammatory drugs and their mechanism of action. New Targets in Inflammation.
- [13] Narayanan, B. A., Narayanan, N. K., Pttman, B., & Reddy, B. S. 2006. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. The Prostate, 66(3), 257–265.
- [14] Mitrugno, A., Sylman, J. L., Ngo, A. T. P., Pang, J., Sears, R. C., Williams, C. D., & McCarty, O. J. T. 2017. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189.
- [15] Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. 1971. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327.
- [16] Wall, M. E., & Wani, M. C. 1995. Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Research, 55(4), 753–760.
- [17] Matson, D. R., & Stukenberg, P. T. 2011. Spindle poisons and cell fate: a tale of two pathways. Molecular Interventions, 11(2), 141–150.
- [18] Surapaneni, M. S., Das, S. K., & Das, N. G. 2012. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacology, 2012, 623139.
- [19] Gascoigne, K. E., & Taylor, S. S. 2009. How do anti-mitotic drugs kill cancer cells? Journal of Cell Science, 122(Pt 15), 2579–2585.
- [20] Denton, D., & Kumar, S. 2018. Autophagy-dependent cell death. Cell Death and Differentiation, 26(4), 605–616.
- [21] Glick, D., Barth, S., & Macleod, K. F. 2010. Autophagy: cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3.
- [22] Mizushima, N. 2005. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death and Differentiation, 12 Suppl 2, 1535–1541.
- [23] Kundu, M., & Thompson, C. B. (2008). Autophagy: Basic Principles and Relevance to Disease. Annual Review of Pathology: Mechanisms of Disease. 3, 427-55.
- [24] Li, X., He, S., & Ma, B. 2020. Autophagy and autophagy-related proteins in cancer. Molecular Cancer. 19(12).
- [25] Sheng, J., Qin, H., Zhang, K., Li, B., & Zhang, X. 2018. Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. American Journal of Cancer Research, 8(3), 354–365
- [26] Castoldi, F., Vacchelli, E., Zitvogel, L., Maiuri, M. C., Pietrocola, F., & Kroemer, G. 2019. Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncoimmunology, 8(1), e1498285.
- [27] Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology. 13(2), 89-102.
- [28] Tabas, I., & Ron, D. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology. 13(3), 184-90.
- [29] Sidrauski, C., & Walter, P. 1997. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell, 90(6), 1031–1039.
- [30] Corazzari, M., Gagliardi, M., Fimia, G. M., & Piacentini, M. 2017. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Frontiers in Oncology. 7:78.
- [31] Erzurumlu, Y., & Ballar, P. 2017. Androgen Mediated Regulation of Endoplasmic Reticulum-Associated Degradation and its Effects on Prostate Cancer. Scientific Reports, 7, 40719.
- [32] Viljoen,T.C., van Aswegen, C.H., du Plessis, D.J., 1995. Influence of acetylsalicylic acid and metabolites on DU-145 prostatic cancer cell proliferation. Oncology, 52(6), 465-9.
- [33] Tolba, M. F., Esmat, A., Al-Abd, A. M., Azab, S. S., Khalifa, A. E., Mosli, H. A., Abdel-Rahman, S. Z., & Abdel-Naim, A. B. 2013. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life, 65(8), 716-29.
- [34] Ho, C.-C., Yang, X. W., Lee, T.-L., Liao, P.-H., Yang, S.-H., Tsai, C.-H., & Chou, M.-Y. 2003. Activation of p53 signalling in acetylsalicylic acid-induced apoptosis in OC2 human oral cancer cells. Eur J Clin Invest.
- [35] Yoshii, S. R., & Mizushima, N. 2017. Monitoring and Measuring Autophagy. International Journal of Molecular Sciences, 18(9).
- [36] Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford, L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., Carlin, S. M., Ryan, A., Szczepanek, C. M., Crowley, J. J., &Coltman, C. A., Jr. 2003. The influence of finasteride on the development of prostate cancer. The New England Journal of Medicine, 349(3), 215–224.
- [37] Palapattu, G. S., Sutcliffe, S., Bastian, P. J., Platz, E. A., De Marzo, A. M., Isaacs, W. B., & Nelson, W. G. 2005. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis, 26(7), 1170–1181.
- [38] Narayanan, B. A., Narayanan, N. K., Pttman, B., & Reddy, B. S. 2006. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. The Prostate, 66(3), 257–265.
- [39] Dennis, L. K., Lynch, C. F., & Torner, J. C. 2002. Epidemiologic association between prostatitis and prostate cancer. Urology. 60(1), 78-83.
- [40] Tao, D. L., Tassi Yunga, S., Williams, C. D., & McCarty, O. J. T. 2021. Aspirin and antiplatelet treatments in cancer. Blood, 137(23), 3201–3211.
- [41] Maclagan, T. 1876. The Treatment Of Acute Rheumatısm By Salıcın. The Lancet. 29(6), 1321-3.
- [42] Drew, D. A., Cao, Y., & Chan, A. T. 2016. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.
- [43] Negi, R. R., Rana, S. V., Gupta, V., Gupta, R., Chadha, V. D., Prasad, K. K., & Dhawan, D. K. 2019. Over-Expression of Cyclooxygenase-2 in Colorectal Cancer Patients. Asian Pacific Journal of Cancer Prevention: APJCP, 20(6), 1675–1681.
- [44] Wilson, A. J., Fadare, O., Beeghly-Fadiel, A., Son, D.-S., Liu, Q., Zhao, S., Saskowski, J., Uddin, M. J., Daniel, C., Crews, B., Lehmann, B. D., Pietenpol, J. A., Crispens, M. A., Marnett, L. J., & Khabele, D. 2015. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer. Oncotarget, 6(25), 21353–21368.
- [45] Sangha, S. 2005. Non-steroidal anti-inflammatory drugs and colorectal cancer prevention. Postgraduate Medical Journal. 106(7), 1340-1350.
- [46] Vergne, P., Bertin, P., & Trèves, R. 2000. Aspirine, douleurs et inflammation [Aspirin, pain and inflammation]. La Revue de medecine interne, 21, 89–96.
- [47] Elwood, P. C., Gallagher, A. M., Duthie, G. G., Mur, L. A. J., & Morgan, G. 2009. Aspirin, salicylates, and cancer. The Lancet, 373(9671), 1301–1309.
- [48] Jordan, M. A., Toso, R. J., Thrower, D., & Wilson, L. 1993. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9552–9556.
- [49] Wang, J., Lou, P., Lesniewski, R., & Henkin, J. 2003. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anti-Cancer Drugs, 14(1), 13–19.
- [50] Pulkkinen, J. O., Elomaa, L., Joensuu, H., Martikainen, P., Servomaa, K., & Grenman, R. 1996. Paclitaxel-induced apoptotic changes followed by time-lapse video microscopy in cell lines established from head and neck cancer. Journal of Cancer Research and Clinical Oncology, 122(4), 214–218.
- [51] Stone, A. A., & Chambers, T. C. 2000. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Experimental Cell Research, 254(1), 110–119.
- [52] Dupont, N., Leroy, C., Hamaï, A., & Codogno, P. 2017. Long-Lived Protein Degradation During Autophagy. Methods in Enzymology. 588, 31-40.
- [53] Yoshida, G. J. 2017. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. Journal of Hematology & Oncology, 10(1), 67.
- [54] Chun, Y., & Kim, J. 2018. Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells, 7(12).
- [55] Wang, K., Liu, X., Liu, Q., Ho, I. H., Wei, X., Yin, T., Zhan, Y., Zhang, W., Zhang, W., Chen, B., Gu, J., Tan, Y., Zhang, L., Chan, M. T., Wu, W. K., Du, B., & Xiao, J. 2020. Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death & Disease, 11(8), 611.
- [56] Lin, J., Chen, S., Lu, C., Lin, J., & Yen, G. 2020. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine‐resistant human pancreatic cancer cells. Phytotherapy Research. 34(8), 2053-2066.
- [57] Wang, Y., Xie, W., Humeau, J., Chen, G., Liu, P., Pol, J., Zhang, Z., Kepp, O., & Kroemer, G. 2020. Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy. Journal for Immunotherapy of Cancer, 8(1).
- [58] Erzurumlu, Y., Dogan, H. K., Catakli, D., & Aydogdu, E. 2022. Tarantula cubensis Extract Induces Cell Death in Prostate Cancer by Promoting Autophagic Flux/ER Stress Responses and Decreased Epithelial-Mesenchymal Transition. Revista Brasileira de Farmacognosia. 32, 575-582.
- [59] Khing, T. M., Choi, W. S., Kim, D. M., Po, W. W., Thein, W., Shin, C. Y., & Sohn, U. D. 2021. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Scientific Reports, 11(1), 23490.
- [60] Nath, S., Dancourt, J., Shteyn, V., Puente, G., Fong, W. M., Nag, S., Bewersdorf, J., Yamamoto, A., Antonny, B., & Melia, T. J. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nature Cell Biology, 16(5), 415–424.
- [61] Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., &Ohsumi, Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature, 408(6811).
- [62] Arakawa, S., Honda, S., Yamaguchi, H., & Shimizu, S. 2017. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93(6), 378.
- [63] Bjørkøy, G., Lamark, T., Pankiv, S., Øvervatn, A., Brech, A., & Johansen, T. 2009. Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology, 452.
- [64] Schröder, M., & Kaufman, R. J. 2005. The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–789.
- [65] Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., A. M., Healy, S., Kozlov, A., Muñoz-Pinedo, C., Rehm, M., Chevet, E., &Samali, A. 2019. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J; 286: 241–278.
- [66] Bahar, E., Kim, J.-Y., & Yoon, H. 2019. Chemotherapy Resistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers, 11(3).
- [67] Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J. A., & Majsterek, I. 2016. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Current Molecular Medicine. 16(6), 533-44.
- [68] Soldani, C., Lazzè, M. C., Bottone, M. G., Tognon, G., Biggiogera, M., Pellicciari, C. E., & Ivana Scovassi, A. 2001. Poly(ADP-ribose) Polymerase Cleavage during Apoptosis: When and Where? Experimental Cell Research. 296(2), 193-201.
- [69] Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., & Lazebnik, Y. A. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 376(6535).
- [70] Weaver, A. N., & Yang, E. S. 2013. Beyond DNA Repair: Additional Functions of PARP-1 in Cancer. Frontiers in Oncology, 3, 290.
- [71] Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G., & Murcia, J. M. 1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. The Journal of Biological Chemistry, 273(50).
Investigation of Possible Synergistic Effects of Co-administration of Acetylsalicylic Acid and Salicylic Acid with Paclitaxel on Autophagy, ER stress and Apoptotic Cell Death in Prostate Cancer Cells
Yıl 2023,
, 87 - 99, 15.08.2023
Yalçın Erzurumlu
,
Deniz Çataklı
,
Hatice Kübra Doğan
Öz
Prostate cancer is the second most common type of cancer in men and the fifth leading cause of cancer-related death worldwide. Although chemotherapeutics and anti-androgens are frequently used approaches in the treatment of prostate cancer, their use is limited due to acquired drug resistance and developing castration resistance mechanisms. For this reason, the need for new approaches continues to eliminate the side effects of existing treatments and to improve the therapeutic efficacy of currently used agents. In the present study, we investigated the effect of acetylsalicylic acid (ASA) and salicylic acid (SA) alone or their combination with Paclitaxel which is an anti-mitotic agent frequently used in the treatment of various chemotherapy-resistant cancer types, on the PERK branch of unfolded protein response (UPR) signaling, autophagy and apoptotic cell death in prostate cancer cells. Our findings showed that the combination of Paclitaxel with ASA and SA has strong anti-cancer effects on prostate cancer cells by inducing autophagy, causing CHOP stimulation via the PERK arm of the UPR and activating apoptotic proteins caspase-3 and PARP-1. These results suggest that the combination of ASA and SA with Paclitaxel may offer an effective treatment approach by improving the anti-cancer efficacy of Paclitaxel in the treatment of prostate cancer.
Proje Numarası
TSG-2021-8302, TAB-2020-8253
Kaynakça
- [1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 71(3), 209-249.
- [2] Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48.
- [3] Brookman-May, S. D., Campi, R., Henríquez, J. D. S., Klatte, T., Langenhuijsen, J. F., Brausi, M., Linares-Espinós, E., Volpe, A., Marszalek, M., Akdogan, B., Roll, C., Stief, C. G., Rodriguez-Faba, O., & Minervini, A. 2019. Latest Evidence on the Impact of Smoking, Sports, and Sexual Activity as Modifiable Lifestyle Risk Factors for Prostate Cancer Incidence, Recurrence, and Progression: A Systematic Review of the Literature by the European Association of Urology Section of Oncological Urology (ESOU). European Urology Focus
- [4] Crawford, E. D., Petrylak, D., & Sartor, O. 2017. Navigating the evolving therapeutic landscape in advanced prostate cancer. Urologic Oncology, 35S, S1–S13.
- [5] Patrikidou, A., Loriot, Y., Eymard, J.-C., Albiges, L., Massard, C., Ileana, E., Di Palma, M., Escudier, B., & Fizazi, K. 2014. Who dies from prostate cancer? Prostate Cancer and Prostatic Diseases, 17(4), 348–352.
- [6] Simić, A., Manojlović, D., Segan, D., & Todorović, M. 2007. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules, 12(10), 2327–2340.
- [7] Ekinci, D., Sentürk, M., & Küfrevioğlu, Ö. İ. 2011. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools. Expert Opinion on Therapeutic Patents, 21(12), 1831–1841.
- [8] Dachineni, R., Ramesh Kumar, D., Callegari, E., Kesharwani, S. S., Sankaranarayanan, R., Seefeldt, T., Jayarama Bhat, G. 2017. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. International Journal of Oncology, 51(6), 1661-1673.
- [9] Vejselova, D., & Kutlu, H. M. 2015. Inhibitory effects of salicylic acid on A549 human lung adenocarcinoma cell viability. Turkish Journal of Biology = Turk Biyoloji Dergisi / the Scientific and Technical Research Council of Turkey, 39(1), 1–5.
- [10] Mahdi, J. G., Alkarrawi, M. A., Mahdi, A. J., Bowen, I. D., & Humam, D. 2006. Calcium salicylate-mediated apoptosis in human HT-1080 fibrosarcoma cells. Cell Proliferation. 39(4), 249-60.
- [11] Fuster, V., & Sweeny, J. M. 2011. Response to Letter Regarding Article, “Aspirin: A Historical and Contemporary Therapeutic Overview”. Circulation. 124(12).
- [12] Vane, J. R., & Botting, R. M. 1996. The history of anti-inflammatory drugs and their mechanism of action. New Targets in Inflammation.
- [13] Narayanan, B. A., Narayanan, N. K., Pttman, B., & Reddy, B. S. 2006. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. The Prostate, 66(3), 257–265.
- [14] Mitrugno, A., Sylman, J. L., Ngo, A. T. P., Pang, J., Sears, R. C., Williams, C. D., & McCarty, O. J. T. 2017. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189.
- [15] Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. 1971. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93(9), 2325–2327.
- [16] Wall, M. E., & Wani, M. C. 1995. Camptothecin and taxol: discovery to clinic—thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Research, 55(4), 753–760.
- [17] Matson, D. R., & Stukenberg, P. T. 2011. Spindle poisons and cell fate: a tale of two pathways. Molecular Interventions, 11(2), 141–150.
- [18] Surapaneni, M. S., Das, S. K., & Das, N. G. 2012. Designing Paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmacology, 2012, 623139.
- [19] Gascoigne, K. E., & Taylor, S. S. 2009. How do anti-mitotic drugs kill cancer cells? Journal of Cell Science, 122(Pt 15), 2579–2585.
- [20] Denton, D., & Kumar, S. 2018. Autophagy-dependent cell death. Cell Death and Differentiation, 26(4), 605–616.
- [21] Glick, D., Barth, S., & Macleod, K. F. 2010. Autophagy: cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3.
- [22] Mizushima, N. 2005. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death and Differentiation, 12 Suppl 2, 1535–1541.
- [23] Kundu, M., & Thompson, C. B. (2008). Autophagy: Basic Principles and Relevance to Disease. Annual Review of Pathology: Mechanisms of Disease. 3, 427-55.
- [24] Li, X., He, S., & Ma, B. 2020. Autophagy and autophagy-related proteins in cancer. Molecular Cancer. 19(12).
- [25] Sheng, J., Qin, H., Zhang, K., Li, B., & Zhang, X. 2018. Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. American Journal of Cancer Research, 8(3), 354–365
- [26] Castoldi, F., Vacchelli, E., Zitvogel, L., Maiuri, M. C., Pietrocola, F., & Kroemer, G. 2019. Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncoimmunology, 8(1), e1498285.
- [27] Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology. 13(2), 89-102.
- [28] Tabas, I., & Ron, D. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology. 13(3), 184-90.
- [29] Sidrauski, C., & Walter, P. 1997. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell, 90(6), 1031–1039.
- [30] Corazzari, M., Gagliardi, M., Fimia, G. M., & Piacentini, M. 2017. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Frontiers in Oncology. 7:78.
- [31] Erzurumlu, Y., & Ballar, P. 2017. Androgen Mediated Regulation of Endoplasmic Reticulum-Associated Degradation and its Effects on Prostate Cancer. Scientific Reports, 7, 40719.
- [32] Viljoen,T.C., van Aswegen, C.H., du Plessis, D.J., 1995. Influence of acetylsalicylic acid and metabolites on DU-145 prostatic cancer cell proliferation. Oncology, 52(6), 465-9.
- [33] Tolba, M. F., Esmat, A., Al-Abd, A. M., Azab, S. S., Khalifa, A. E., Mosli, H. A., Abdel-Rahman, S. Z., & Abdel-Naim, A. B. 2013. Caffeic acid phenethyl ester synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate cancer cells. IUBMB Life, 65(8), 716-29.
- [34] Ho, C.-C., Yang, X. W., Lee, T.-L., Liao, P.-H., Yang, S.-H., Tsai, C.-H., & Chou, M.-Y. 2003. Activation of p53 signalling in acetylsalicylic acid-induced apoptosis in OC2 human oral cancer cells. Eur J Clin Invest.
- [35] Yoshii, S. R., & Mizushima, N. 2017. Monitoring and Measuring Autophagy. International Journal of Molecular Sciences, 18(9).
- [36] Thompson, I. M., Goodman, P. J., Tangen, C. M., Lucia, M. S., Miller, G. J., Ford, L. G., Lieber, M. M., Cespedes, R. D., Atkins, J. N., Lippman, S. M., Carlin, S. M., Ryan, A., Szczepanek, C. M., Crowley, J. J., &Coltman, C. A., Jr. 2003. The influence of finasteride on the development of prostate cancer. The New England Journal of Medicine, 349(3), 215–224.
- [37] Palapattu, G. S., Sutcliffe, S., Bastian, P. J., Platz, E. A., De Marzo, A. M., Isaacs, W. B., & Nelson, W. G. 2005. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis, 26(7), 1170–1181.
- [38] Narayanan, B. A., Narayanan, N. K., Pttman, B., & Reddy, B. S. 2006. Adenocarcina of the mouse prostate growth inhibition by celecoxib: downregulation of transcription factors involved in COX-2 inhibition. The Prostate, 66(3), 257–265.
- [39] Dennis, L. K., Lynch, C. F., & Torner, J. C. 2002. Epidemiologic association between prostatitis and prostate cancer. Urology. 60(1), 78-83.
- [40] Tao, D. L., Tassi Yunga, S., Williams, C. D., & McCarty, O. J. T. 2021. Aspirin and antiplatelet treatments in cancer. Blood, 137(23), 3201–3211.
- [41] Maclagan, T. 1876. The Treatment Of Acute Rheumatısm By Salıcın. The Lancet. 29(6), 1321-3.
- [42] Drew, D. A., Cao, Y., & Chan, A. T. 2016. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.
- [43] Negi, R. R., Rana, S. V., Gupta, V., Gupta, R., Chadha, V. D., Prasad, K. K., & Dhawan, D. K. 2019. Over-Expression of Cyclooxygenase-2 in Colorectal Cancer Patients. Asian Pacific Journal of Cancer Prevention: APJCP, 20(6), 1675–1681.
- [44] Wilson, A. J., Fadare, O., Beeghly-Fadiel, A., Son, D.-S., Liu, Q., Zhao, S., Saskowski, J., Uddin, M. J., Daniel, C., Crews, B., Lehmann, B. D., Pietenpol, J. A., Crispens, M. A., Marnett, L. J., & Khabele, D. 2015. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer. Oncotarget, 6(25), 21353–21368.
- [45] Sangha, S. 2005. Non-steroidal anti-inflammatory drugs and colorectal cancer prevention. Postgraduate Medical Journal. 106(7), 1340-1350.
- [46] Vergne, P., Bertin, P., & Trèves, R. 2000. Aspirine, douleurs et inflammation [Aspirin, pain and inflammation]. La Revue de medecine interne, 21, 89–96.
- [47] Elwood, P. C., Gallagher, A. M., Duthie, G. G., Mur, L. A. J., & Morgan, G. 2009. Aspirin, salicylates, and cancer. The Lancet, 373(9671), 1301–1309.
- [48] Jordan, M. A., Toso, R. J., Thrower, D., & Wilson, L. 1993. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9552–9556.
- [49] Wang, J., Lou, P., Lesniewski, R., & Henkin, J. 2003. Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anti-Cancer Drugs, 14(1), 13–19.
- [50] Pulkkinen, J. O., Elomaa, L., Joensuu, H., Martikainen, P., Servomaa, K., & Grenman, R. 1996. Paclitaxel-induced apoptotic changes followed by time-lapse video microscopy in cell lines established from head and neck cancer. Journal of Cancer Research and Clinical Oncology, 122(4), 214–218.
- [51] Stone, A. A., & Chambers, T. C. 2000. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Experimental Cell Research, 254(1), 110–119.
- [52] Dupont, N., Leroy, C., Hamaï, A., & Codogno, P. 2017. Long-Lived Protein Degradation During Autophagy. Methods in Enzymology. 588, 31-40.
- [53] Yoshida, G. J. 2017. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. Journal of Hematology & Oncology, 10(1), 67.
- [54] Chun, Y., & Kim, J. 2018. Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells, 7(12).
- [55] Wang, K., Liu, X., Liu, Q., Ho, I. H., Wei, X., Yin, T., Zhan, Y., Zhang, W., Zhang, W., Chen, B., Gu, J., Tan, Y., Zhang, L., Chan, M. T., Wu, W. K., Du, B., & Xiao, J. 2020. Hederagenin potentiated cisplatin- and paclitaxel-mediated cytotoxicity by impairing autophagy in lung cancer cells. Cell Death & Disease, 11(8), 611.
- [56] Lin, J., Chen, S., Lu, C., Lin, J., & Yen, G. 2020. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine‐resistant human pancreatic cancer cells. Phytotherapy Research. 34(8), 2053-2066.
- [57] Wang, Y., Xie, W., Humeau, J., Chen, G., Liu, P., Pol, J., Zhang, Z., Kepp, O., & Kroemer, G. 2020. Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy. Journal for Immunotherapy of Cancer, 8(1).
- [58] Erzurumlu, Y., Dogan, H. K., Catakli, D., & Aydogdu, E. 2022. Tarantula cubensis Extract Induces Cell Death in Prostate Cancer by Promoting Autophagic Flux/ER Stress Responses and Decreased Epithelial-Mesenchymal Transition. Revista Brasileira de Farmacognosia. 32, 575-582.
- [59] Khing, T. M., Choi, W. S., Kim, D. M., Po, W. W., Thein, W., Shin, C. Y., & Sohn, U. D. 2021. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Scientific Reports, 11(1), 23490.
- [60] Nath, S., Dancourt, J., Shteyn, V., Puente, G., Fong, W. M., Nag, S., Bewersdorf, J., Yamamoto, A., Antonny, B., & Melia, T. J. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nature Cell Biology, 16(5), 415–424.
- [61] Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., &Ohsumi, Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature, 408(6811).
- [62] Arakawa, S., Honda, S., Yamaguchi, H., & Shimizu, S. 2017. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 93(6), 378.
- [63] Bjørkøy, G., Lamark, T., Pankiv, S., Øvervatn, A., Brech, A., & Johansen, T. 2009. Monitoring autophagic degradation of p62/SQSTM1. Methods in Enzymology, 452.
- [64] Schröder, M., & Kaufman, R. J. 2005. The mammalian unfolded protein response. Annual Review of Biochemistry, 74, 739–789.
- [65] Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., Luís, A., McCarthy, N., Montibeller, L., More, S., Papaioannou, A., Püschel, F., Sassano, M. L., Skoko, J., Agostinis, P., de Belleroche, J., Eriksson, L. A., Fulda, S., Gorman, A. M., A. M., Healy, S., Kozlov, A., Muñoz-Pinedo, C., Rehm, M., Chevet, E., &Samali, A. 2019. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J; 286: 241–278.
- [66] Bahar, E., Kim, J.-Y., & Yoon, H. 2019. Chemotherapy Resistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers, 11(3).
- [67] Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J. A., & Majsterek, I. 2016. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Current Molecular Medicine. 16(6), 533-44.
- [68] Soldani, C., Lazzè, M. C., Bottone, M. G., Tognon, G., Biggiogera, M., Pellicciari, C. E., & Ivana Scovassi, A. 2001. Poly(ADP-ribose) Polymerase Cleavage during Apoptosis: When and Where? Experimental Cell Research. 296(2), 193-201.
- [69] Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., & Lazebnik, Y. A. 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 376(6535).
- [70] Weaver, A. N., & Yang, E. S. 2013. Beyond DNA Repair: Additional Functions of PARP-1 in Cancer. Frontiers in Oncology, 3, 290.
- [71] Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G., & Murcia, J. M. 1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. The Journal of Biological Chemistry, 273(50).